What is this class about?
We encounter arguments in many contexts: a scientist may argue that a new experiment confirms a theory, a lawyer may argue that the testimony of the witnesses establishes the defendant’s guilt, a mathematician may argue that some accepted axioms entail an unexpected theorem, or a political theorist may argue that the history of political crises shows that they are created by an unwillingness to compromise. In each case, someone reasons from some initial assumptions or previously established results to some conclusion. What makes for a good argument? It certainly helps if the initial starting points are true, but a good argument requires more than that. If I say "I'm a Dodgers fan, so they're going to win the World Series", I've made an argument, albeit not a very convincing one. My starting point, that I'm a Dodgers fan, is true, but that isn't enough to establish my conclusion. In addition to having true starting points, we want an argument to have the right structure: the pieces of the argument need to fit together in such a way that the starting points actually support the conclusion. Logic is the study of arguments, and it aims help us analyze the structure of arguments, and see whether the pieces of an argument fit together in the right sort of way. In this class, we will begin by defining "argument" more precisely and characterizing the structural features that we might like our arguments to exhibit. We will learn how to represent sentences and arguments using a system of symbols that helps us to analyze their logical structure, and we will learn how to use various tools to critique the structure of arguments. Actual arguments are tremendously diverse, and logical systems that work very well for analyzing some kinds of arguments don't always work well for other kinds. The tools we'll cover in this introductory course work very well for a large and important class of arguments, and provide a foundation for studying other kinds of arguments using other systems of logic.

The textbooks
The primary textbook for this course is An Introduction to Symbolic Logic by Terence Parsons, who recently retired from this department. It is affectionately known as “The Terry Text”. It is freely available (yay!) from the course website. If you are not yet officially enrolled in the course, you can also download it from https://sites.google.com/site/tparsons5555/home/logic-text

The second textbook is Logic: Techniques of Formal Reasoning (second edition) by Donald Kalish, Richard Montague, and Gary Marr published by Oxford University Press. The Terry text was written to be a shorter, easier to use presentation of the system of logic developed in that book, but the original is more complete. This book is not required, but if you are thinking of studying logic further after this class, then I encourage you to get it. Besides, it will look so handsome on your bookshelf.

Logic 2010
All homework assignments and exams require the use of a computer program developed at UCLA specifically for this class (and other logic classes) called Logic 2010: A Workbook. This program works on Windows PCs as well as Macs.
The program can be downloaded for free from http://logiclx.humnet.ucla.edu/
See the document titled “Installing, Starting, Registering, and Backing Up in LOGIC 2010” on the course website for more details.

You may install the program on your own machine(s) and you can also run it on machines in the CLICC labs (located on the 3rd floor of Powell Library) where it is already installed. You can also install and run it on machines in dormitory computer labs; please contact the administrators for those labs if you have difficulty installing it there.

Homework

Logic is not inherently difficult, but it does take practice. We therefore assign sets of homework problems which are **due ten minutes before every lecture**, except for the first day and the lecture after an exam. There is normally no credit for homework problems that are incorrect or are submitted late.

You can always check which problems have been assigned, when they are due, how many points they are worth, and whether you have submitted work and been given credit for it by visiting the assignments page at https://logiclx.humnet.ucla.edu/Logic/Student/Course. The assignments page is tied to your Logic 2010 user account, so you must register yourself with Logic 2010 in order to use it.

Some students breeze through the homework, but most students will struggle with at least some of the assignments. Don't panic if you are unable to complete a homework assignment. Help is available, and even if your work winds up incomplete, just submit what you have. As you will see, missing a few homework problems here and there is unlikely to have much of an impact on your grade. Don't skip homework, however, as you will need regular practice in order to keep pace with the class and be prepared for the exams.

For help on homework problem, please first look over the relevant parts of the Terry text. It is a great resource that students often do not make sufficient use of. If the textbook doesn't help, feel free to email me. **When you email me**, please tell me your name, your student ID number, the problem you are asking about (e.g. Symbolization 2.023 or Derivation 1.012), and tell me where you are getting stuck, as best you can. It is a very good idea to attach a screenshot of your work. The same applies if you have questions about Logic 2010 (where again, a screenshot can be very useful). This will help me to answer your question better and quicker. I try to answer students' emails a couple of times per day, but if you email me late at night or early in the morning, you may not get a reply until after lecture. This is another reason to attempt the homework earlier rather than later.

Collaborating with friends and classmates on homework is encouraged, but if you rely on someone else to do your homework, it is likely to hurt you on the exams (and in the class overall).

I highly encourage you to ask about problems that you found difficult or confusing during lecture, discussion section, and office hours.

Exams

There will be a midterm and a final exam. Both exams will be administered in a computer lab. Exams are open note, meaning that you may bring and refer to any materials that you like (including class notes, textbooks, example problems that you have copied down, astrological charts and anything else you like) but you may not use any phones, tablets, or other devices besides the lab computer during the exam. Obviously, no collaboration is allowed on exams.
Grading
Your grade in the class is based on your performance on the homework assignments and the exams, which are weighted as follows:
- Total homework: 30%
- Midterm exam: 30%
- Final exam: 40%
As you can see, the exams account for the bulk of the grade in this class. It is intended that students be able to do well in the class even if they struggle with some homework assignments. Do not skip homework assignments, however, thinking “Well, it’s just a few points”. Catching up is much harder than staying caught up, so I strongly recommend trying your best on each assignment.

You will receive a letter grade for each exam, and your homework (based on points scored / points possible). Your grade in the class will be computed as a weighted average of your letter grades using a 12-point scale (A=12, A-=11, B+=10 etc.)

Schedule

Lectures are on Tuesday and Thursday from 1:00 to 3:05 PM in Bunche 1221A.

Discussion sections are on Tuesday from 11:30 to 12:20 in Bunche 2168 (Dis 2A) and Thursday from 9:30 to 10:20 in Bunche 1221 A (Dis 2B). You are welcome to attend either (or indeed neither or both) discussion sections.

Office hours are on Monday 10:00 to noon in CLICC A and Wednesday from noon to 2:00 in CLICC B.

For exceptions to the above, see below.

<table>
<thead>
<tr>
<th>Week of</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7</td>
<td></td>
<td>Lec</td>
<td>OH in CLICC B 12-2</td>
<td>Lec, 2B</td>
</tr>
<tr>
<td>8/14</td>
<td>OH in CLICC B 10-12</td>
<td>Lec, 2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/21</td>
<td>Out of town</td>
<td>Lec, 2A</td>
<td>Review in CLICC C 3-5</td>
<td>2B, Midterm CLICC C 1-3</td>
</tr>
<tr>
<td>8/28</td>
<td>OH in CLICC A 10-12</td>
<td>Lec, 2A</td>
<td>OH in CLICC B 12-2</td>
<td>Lec, 2B</td>
</tr>
<tr>
<td>9/4</td>
<td>OH in CLICC A 10-12</td>
<td>Lec, 2A</td>
<td>OH in CLICC B 12-2</td>
<td>Lec, 2B</td>
</tr>
<tr>
<td>9/11</td>
<td>OH in CLICC A 10-12</td>
<td>Lec, 2A</td>
<td>Review in CLICC C 3-5</td>
<td>2B, Final CLICC C 1-3</td>
</tr>
</tbody>
</table>

I will be out of town from 8/15 to 8/21, as shown above. However, I am trying to arrange a review day for 8/17 and will let you know about that ASAP.