CS 31
Introduction to Computer Science I

Howard A. Stahl

Agenda

• Welcome
• Review Syllabus
• My Philosophy
• Let’s Get Started...

Let’s Get Started...

• The Textbook
• Computer Languages
• The History of C++
• The Compilation Process
• Developing Programs With C++
• HelloWorld.cpp
• Variables and Datatypes
The Textbook

- Absolute C++ By Walter Savitch
 - Any Edition Will Do...
 - Readable And Useful

Computer Languages

- Computer Languages Have Evolved Over Time
- Initially, Programmers Wrote Code In Machine Language
 01010110 0001 0001000
- Eventually, Assemblers Were Made To Hide Machine Language Behind Mnemonic Instructions
 ADD R1, 8

High-Level Languages

- C++ Is A "High-Level" Language
- With High-Level Languages, Programmers Write Programs In A Structure Quite Different From What The Machine Actually Executes
- Languages Are Interpreted Or Compiled
 - C++ Is A Compiled Language
The Original Creator Of C++

• Bjarne Stroustrup
 – Formerly of AT&T, Now With Morgan Stanley

The History of C++

• Authored by Bjarne Stroustrup, AT&T
• Extended the C Language
 – Supports Object-Oriented Programming
• C++ is considered a superset of C
• Language Is Now An International Standard
 – C++03 : ISO Standard from 2003 (VS 2012)
 – C++14 : ISO Standard from 2014

Compiled Languages

• Compiled Languages Must Be Turned Into Executable Computer Instructions
 • Preprocessor
 • Linker
 • Compile-time, linkage, run-time
Time For Our First Demo!

• HelloWorld.cpp

(See Handout For Example 1)

Summarizing Our First Demo!

• A Preprocessor handles lines with #
• All C++ statements end with a ;
• The main() function starts the program
• Opening and Closing Braces define code blocks { }
• cout & cin come from <iostream>
• Comments can be single-line with // or extend over multiple lines with /* */

Input and Output in C++

• C++ input statement: cin >> number;
 – a numerical value is extracted from the keyboard (cin) and is placed into the variable called "number".
• C++ output statement: cout << "Hello";
 – send information from program to terminal screen (cout)
 – double quotes "..." delimit a string
 – \n sends a new-line-character
Variables and Datatypes

- Most Programs Manipulate Variables
- Variables Are Named Memory Locations
- Variables Must Be Declared

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int, short, long</td>
<td>Whole numbers</td>
</tr>
<tr>
<td>double</td>
<td>Decimal numbers</td>
</tr>
<tr>
<td>string</td>
<td>Characters</td>
</tr>
<tr>
<td>bool</td>
<td>true or false</td>
</tr>
<tr>
<td>char</td>
<td>A Single Character</td>
</tr>
</tbody>
</table>

Data Types:

Display 1.2 Simple Types (1 of 2)

<table>
<thead>
<tr>
<th>TYPE NAME</th>
<th>MEMORY USED</th>
<th>SIZE RANGE</th>
<th>PRECISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
<td>2 bytes</td>
<td>-32,768 to +32,767</td>
<td>Not applicable</td>
</tr>
<tr>
<td>int</td>
<td>4 bytes</td>
<td>-2,147,483,648 to +2,147,483,647</td>
<td>Not applicable</td>
</tr>
<tr>
<td>long</td>
<td>8 bytes</td>
<td>-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807</td>
<td>Not applicable</td>
</tr>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>Approximately (10^{-38}) to (10^{38})</td>
<td>7 digits</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>Approximately (10^{-308}) to (10^{308})</td>
<td>15 digits</td>
</tr>
</tbody>
</table>

Data Types:

Display 1.2 Simple Types (2 of 2)

<table>
<thead>
<tr>
<th>TYPE NAME</th>
<th>MEMORY USED</th>
<th>SIZE RANGE</th>
<th>PRECISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1 byte</td>
<td>All ASCII characters Can also be used as an integer type, although we do not recommend doing so.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>bool</td>
<td>1 byte</td>
<td>true, false</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

The values listed here are only sample values to give you a general idea of how the types differ. The values for any of these entries may be different on your system. Precision refers to the number of meaningful digits, including digits to the right of the decimal point. The ranges for the types float, double, and long double are the ranges for positive numbers. Negative numbers have a similar range, but with a negative sign in front of each.
C++11 Fixed Width Integer

<table>
<thead>
<tr>
<th>TYPE NAME</th>
<th>MEMORY USED</th>
<th>SIZE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8_t</td>
<td>1 byte</td>
<td>-128 to 127</td>
</tr>
<tr>
<td>uint8_t</td>
<td>1 byte</td>
<td>0 to 255</td>
</tr>
<tr>
<td>int16_t</td>
<td>2 bytes</td>
<td>-32,768 to 32,767</td>
</tr>
<tr>
<td>uint16_t</td>
<td>2 bytes</td>
<td>0 to 65,535</td>
</tr>
<tr>
<td>int32_t</td>
<td>4 bytes</td>
<td>-2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>uint32_t</td>
<td>4 bytes</td>
<td>0 to 4,294,967,295</td>
</tr>
<tr>
<td>int64_t</td>
<td>8 bytes</td>
<td>-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>uint64_t</td>
<td>8 bytes</td>
<td>0 to 18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>long long</td>
<td>8 bytes</td>
<td>at least 8 bytes</td>
</tr>
</tbody>
</table>

Avoids problem of variable integer sizes for different CPU architectures

Variables and Datatypes

- Variables Are Known By Name
- Identifiers Must
 - begin with a-z, A-Z, or _
 - followed by a-z, A-Z, 0-9 or _
- Identifier Names Are Case-Sensitive
- It is always good practice to initialize variable values when they are declared

Reserved Keywords

- You can’t use these lowercase names
- Full List in Appendix 1, page 9115

 break case char const default do double else extern float for if int long return

- We’ll be learning about these over time...
Literals

• A fixed, static value used in a program
• Called “literals” because you “literally typed” them into your program!
• Three basic types in C++
 – numeric 5.1E+3 3.14159 -70
 – character ‘a’ ‘7’ ‘*’
 – string “Hello World!”

Literals and Variables Compared

• A literal is a fixed value that never changes
• A variable is a container for values
 – a named value that may change
 • assignment statement is one way
 • there are many others
 – A variable can only hold one value at a time
 – A variable loses its old value when a new one
 – All variables must be declared before used

Variable Declarations

• Every variable in C++ must be declared
 – normally occurs at the start of a main program
 – associates a name with a datatype
• Syntax: type_name variable_name;
• Examples: int i; double d;
• Your book focuses solely on int and double
Assignment Statement

- Common form: \texttt{variable = expression;}
 - Causes expression to be evaluated and the result assigned as the new value of the variable
- Examples: \texttt{i=5;i=i+1;y=m\times x+b;}
- Can’t Do’s: \texttt{1=7;5=x;"y"="2";}

Time For Our Next Demo!

- Grader.cpp

(See Handout For Example 2)

Summarizing Our Second Demo!

- Programs Can Get Quite Long!!!
- Use \texttt{#include <string>} for string
- Variables hold a single value at a time:
- Const holds only a single value ever
- Arithmetic Operations: ++ - - += -= *= /=
- Notation Shorthand:++ -- += -= *= /=
- Special Characters: \texttt{\backslash t \backslash n \backslash \backslash}
Variable Initialization

• A variable has no meaningful value unless assigned
• Rule: Set each variable before its value is used! GARBAGE, otherwise! (The container has no predictable value)
• One way of avoiding uninitialized variables: initialize at the time of declaration
 - `int your_sum = 20;`
 - `double rate(0.1), balance(0.00);`

Time For Our Next Demo!

• Datatypes.cpp

(See Handout For Example 3)

Summarizing Our Third Demo!

• Variables Are Typed Memory Locations
 – datatype determines size requirements
• When Choosing Datatypes, Be Mindful Of Their Valid Values
Summary

• Computer Languages
• The Compilation Process
• The History of C++
• Developing Programs With C++
• HelloWorld.cpp
• Variables and Datatypes