1. (a) (5 points) Write down the existence and uniqueness theorem for initial value problems.

(b) (5 points) Show that the ODE $\frac{dy}{dx} = (y - 2)^{\frac{1}{3}}$ with initial value $y(0) = 2$ has two solutions.

(c) (5 points) What part of the existence/uniqueness theorem fails to hold in the above example?
2. (15 points) Mice in my house follow the population law \(\frac{dx}{dt} = (\alpha - \beta)x - \gamma x^2 \), where \(\alpha, \beta, \gamma \) are positive parameters. Explain using a bifurcation diagram why there are no mice if \(\alpha < \beta \) and a stable population of mice if \(\alpha > \beta \).

Find an exact value for the equilibrium population for \(\alpha > \beta \).
3. The second order ODE $\varepsilon y'' = y' - (x^3 - x)$ is to be solved by a singular perturbation.

 (a) (5 points) Set $u = y$ and $v = y'$. Graph the approximate solution with $\varepsilon = 0$ in the phase plane.

 (b) (5 points) In the above picture, include a sketch what an actual solution with initial condition $y(0) = 0$, $y'(0) = 1$ would look like.

 (c) (5 points) Explain why the actual solutions such as the one above must converge rapidly to the approximate solution.
4. A spring-mass system satisfies \(m \frac{d^2h}{dt^2} + b \frac{dh}{dt} + h = f. \) \(h \) represents height (length), and \(t \) is time, \(m \) is mass, \(f \) is force.

(a) (5 points) Let \(L \) be the length of the spring and use \(x = h/L \) to get a new differential equation for \(x \).

(b) (5 points) Rescale time and divide by whatever is in front of the \(h \) term to get a dimensionless equation.

(c) (5 points) Find a condition in terms of dimensionless parameters such that the highest derivative term can be neglected. On what time scale \(T \) does your approximation hold?
5. (a) (10 points) For \(x' = r(10 - x) - sx^r x \) show that for some small \(r \) there are two stable positions, but if \(r \) is large there is only one.

(b) (5 points) What happens if \(x \) starts at the lower critical point when \(r \) is small, but \(r \) is raised gradually to some high value? Then what happens if \(r \) is lowered back to the original value?
6. (15 points) Draw the bifurcation diagram for $x' = rx - \frac{x}{1+x^2}$. What is this bifurcation called?
7. (15 points) Runner A follows runner B around a circular track. If ϕ is the difference in their positions then ϕ follows the equation $\phi' = \gamma - K \cos(\phi)$, where K is a fixed positive constant. Show that if γ is large then A will always be falling behind B, but if γ is small then A will settle to a fixed position behind B. What is the latter situation called?