Functions with Countably Many Discontinuities Are Riemann Integrable

Since I pretty well muddled the proof that functions with a finite number of discontinuities are Riemann integrable, I will try to make amends by proving that functions with a countable number of discontinuities are Riemann integrable.

Assume that f is defined on $[a, b]$ and $|f(x)| \leq B$. It will be convenient to define $f(x) = f(a)$ for $-\infty < x < a$ and $f(x) = f(b)$ for $b < x < \infty$. Note that when f is continuous at $x = a$ or $x = b$ that will be true for this extension.

Suppose that the discontinuities of f are given by $S = \{x_n, n \in \mathbb{N}\}$. Then, given $\epsilon > 0$, we have the intervals $I_n = \{x : |x-x_n| < 2^{-n}\epsilon\}$. Note the sum of the lengths of the I_n's is ϵ. Consider $\mathcal{O} = \bigcup_{n=1}^{\infty} I_n$. \mathcal{O} is an open set in \mathbb{R}, and $J = [a, b] \setminus \mathcal{O}$ is compact.

Since f is continuous at all points of J, given $x \in J$, there is a $\delta_x > 0$ such that $M_x - m_x < \epsilon$, where $M_x = \sup\{f(t), t \in I_x\}$ and $m_x = \inf\{f(t), t \in I_x\}$ and $I_x = \{t : x-\delta_x \leq t \leq x+\delta_x\}$. Since J is compact and covered by the open interiors of the I_x's, there is a finite set of I_x's that cover J that I will label as $J_1, ..., J_N$.

Finally, form the partition P consisting the endpoints of $J_1, ..., J_N$ that lie in $[a, b]$ plus a and b. Any interval in P is either a subinterval of one of the I_j's or its interior is in \mathcal{O}. Since \mathcal{O} is a union of intervals whose lengths sum to ϵ, we have

$$U(f, P) - L(f, P) \leq \epsilon(b-a) + 2B\epsilon,$$

where the first term on the right comes from intervals which are subintervals of one the I_j's and the second comes from intervals with interiors in \mathcal{O}. Hence, since ϵ arbitrary, f is Riemann integrable by the standard criterion.

In writing this I used ideas from “stackexchange.com/questions/263189”