Limit laws for addition, subtraction, multiplication, division

If \(\lim_{x \to c} f(x) \) exists and \(\lim_{x \to c} g(x) \) exists, then

1. \(\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \)

2. \(\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) \)

3. \(\lim_{x \to c} k \cdot f(x) = k \cdot \lim_{x \to c} f(x) \) for any constant \(k \)

4. \(\lim_{x \to c} (f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) \)

5. if \(\lim_{x \to c} g(x) \neq 0 \) then

\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}
\]
6. If \(\lim_{x \to a} g(x) = c \) and \(\lim_{u \to c} f(u) = L \), then

\[
\lim_{x \to a} f(g(x)) = L
\]
Laws for combining continuous functions

If \(f \) and \(g \) are functions that are continuous at \(x = c \), then

1. \(f + g \) is continuous at \(x = c \).

2. \(f - g \) is continuous at \(x = c \).

3. \(kf \) is continuous at \(x = c \), where \(k \) is any constant.

4. \(f \cdot g \) is continuous at \(x = c \).

5. if \(g(c) \neq 0 \) then \(\frac{f}{g} \) is continuous at \(x = c \).
Composition of continuous functions is continuous

6. If the function \(g \) is continuous at \(x = a \) and the function \(f \) is continuous at \(g(a) \), then the composition

\[
f \circ g,
\]

that is, the function defined by \(f(g(x)) \), is continuous at \(x = a \).