Practice Test for chapter 1
Math 1

Show work where appropriate. Answers without adequate justification will not receive full credit.

1) Circle the letter for each of the following which represent a function.

 a) \[\begin{array}{c|ccc}
 x & 5 & 7 & 9 \\
 \hline
 f(x) & -1 & 4 & 6
 \end{array} \]

 b) \[\begin{array}{c|ccc}
 x & 5 & 7 & 7 \\
 \hline
 g(x) & -1 & 4 & 6
 \end{array} \]

 c) \[\begin{array}{c|ccc}
 x & 5 & 7 & 9 \\
 \hline
 h(x) & -1 & 4 & 4
 \end{array} \]

 d) \[\text{Graph of a function with a non-linear shape} \]

 e) \[\text{Graph of a function with a non-linear shape} \]

 f) \[\text{Graph of a circle} \]

 g) If any of the functions you circled are also one-to-one write the letter(s) here ________

2) The function \(f(x) \) is represented by the table below

\[\begin{array}{c|c|c|c|c|c|c}
 x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
 \hline
 f(x) & 6 & 4 & 1 & -1 & 2 & 3 & 4
 \end{array} \]

 a) Evaluate \(f(2) \) \[\quad \]
 b) Solve \(f(x) = 4 \) \[\quad \]
 c) Is \(f(x) \) one-to-one? \[\quad \]
 d) Find the average rate of change of \(f(x) \) on \([0,2]\) \[\quad \]

3) Given \(g(x) = 4x - x^2 \), evaluate & simplify
 a) \(g(-3) \) \[\quad \]
 b) \(g(x+3) \) \[\quad \]
4) A function $G = f(n)$ gives the number of tons of garbage, G, produced by n households in a month. Explain the meaning of $f(4) = 8$ in words. (Answer in a complete sentence)

5) Find and simplify the average rate of change of $g(x) = x^2 - 4x$ on the interval $[a, 1]$

6) In part a, find the domain of $g(x)$. In part b, find the domain & range of $f(x)$. Write your answers in interval notation.

 a) $g(x) = \frac{\sqrt{x - 2}}{x - 5}$
 Domain of $g(x)$____________________

 b)
 Domain of $f(x)$____________________
 Range of $f(x)$____________________
 $f(x)$ is decreasing on: ________________
 $f(x)$ is concave up on: ________________

7) (10pts) Given the table below, evaluate the following:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

 a. $f(g(5)) = _______________________

 b. $g(f(2)) = _______________________

 c. $g(g(2)) = _______________________

 d. $g^{-1}(5) = _______________________

 e. $f^{-1}(5) = _______________________

8) (11pts) Given \(f(x) = 2\sqrt{x+3} \) and \(g(x) = 3x^2 - 3 \)

a) Evaluate \(g(f(1)) \)

b) Find & Simplify \(f(g(x)) \)

c) What is the domain of \(f(g(x)) \)

9) (4pts) Based on the graphs shown below

![Graph of f(x)](image1)

![Graph of g(x)](image2)

a. Evaluate \(f(g(2)) \)

b. Evaluate \(f^{-1}(2) \)

10) (5pts) Suppose the function \(P(t) \) gives the estimated population of a town \(t \) years after 2011. The function \(N(c) \) gives the size of population that \(c \) police officers can patrol. Interpret (explain in plain English) the meaning of the statement \(200 = N^{-1}(P(5)) \)

11) (4pts) If \(f(x) = 300 + 15x \), find \(f^{-1}(30) \)
12) (5pts) Write an equation for a square root function that has been flipped over the \(y\)-axis, compressed horizontally by \(\frac{1}{2}\), and shifted up 2.

13) (10pts) Based on the graph of \(f(x)\) given here

Sketch a graph of \(g(x) = -2f(x - 1)\) and describe the transformation in words

14) (13pts) The following graph is made from pieces of three transformed toolkit functions. Write a piecewise defined function that describes the graph.

\[
\begin{cases}
\text{__________________________} & \text{if } \text{__________________________} \\
\text{__________________________} & \text{if } \text{__________________________} \\
\text{__________________________} & \text{if } \text{__________________________}
\end{cases}
\]

\(f(x) = \)