UCLA MSOL
CS260 Machine Learning Algorithms
Winter 2018

Week 5 - Midterm Review

Yutao He
yutao@cs.ucla.edu
http://ccle.ucla.edu/course/view/18W-COMSCI260-1
Outline

• Midterm logistics
• Topics to be covered
• Review of the topics
• Some Rehearsal Problems will be posted
Midterm Logistics

• Date and Time:
 – 1-3pm
 – Saturday February 10, 2018

• Location
 – 325 Botany

• Office Hour:
 – Thursday 8-10pm Thursday, February 8

• Policy:
 – Close-book and closed note
 – May bring two-page single-sided 8.5’x11’ cheat sheet
 – A Calculator IS allowed

• Coverage:
 – All contents covered in Lecture Notes (CS260-Lec1 to CS260-Lec5)
Topics Won’t Be Covered

- Chapter 1.3, 1.4
- Chapter 2
- Chapter 3.4
Topics Won’t Be Covered

• Date and Time:
 – 1:00pm- 3pm
 – Saturday February 10, 2018

• Location
 – Botany

• Office Hour:
 – Thursday 8-10pm Thursday, February 8

• Policy:
 – Close-book and closed note
 – May bring two-page single-sided 8.5’x11’ cheat sheet
 – A Calculator IS allowed

• Coverage:
 – Chapters 1 - 6, 10.3
What We Have Learned

- Basic concepts of machine learning
 - Learning Model
 - Learning Components
 - Learning Style
- The linear model algorithms
 - PLA/Pocket
 - Linear Regression
 - Logistic Regression
- The application of ML algorithms into solving the real-world problem
Framework of Machine Learning

unknown target function $f: \mathcal{X} \rightarrow \mathcal{Y}$

(ideal credit approval formula)

training examples $\mathcal{D}: (x_1, y_1), \ldots, (x_N, y_N)$

(historical records in bank)

learning algorithm \mathcal{A}

final hypothesis $g \approx f$

('learned' formula to be used)

hypothesis set \mathcal{H}

(set of candidate formula)
Things You Should Know Well

• Basic Concepts
 • target function
 • hypothesis set
 • training/test datasets
 • perceptron and PLA and Pocket algorithm
 • linear separate
 • linear regression, pseudo-inverse, squared errors
 • logistic regression, logistic function, gradient descent, cross-entropy errors
Linear Model Algorithm Comparison

Credit Analysis
- Approve or Deny
- Amount of Credit
- Probability of Default

Perceptron
- Classification Error
 PLA, Pocket, ...

Linear Regression
- Squared Error
 Pseudo-inverse

Logistic Regression
- Cross-entropy Error
 Gradient descent
Midterm Sneak Preview

• Philosophy
 – Test your digital fluency in two aspects:
 * Firm grasp of basic theories and techniques
 * Hands-on skills of designing and analyze a machine learning problem using the linear models

• Format:
 – Q & A
 ★ Conceptual problems
 ★ Design: solve a problem using one of algorithms
 ★ Analysis: pros and cons.

• Length:
 – Will have 4 to 6 problems
 – Points are assigned according to the estimated difficulty of the problems