Note about notation: In Exercise 43, the scalars \(c_1 \) and \(c_2 \) were used to refer to the coordinates of a point in the new coordinate system defined by a different basis \(\{ \mathbf{u}, \mathbf{v} \} \). In class, I referred to these as simply “\(R, S \)-coordinates”. For convenience, I will continue to use that terminology/notation here. So remember that the \(c_1 \) from Exercise 43 is \(R \) here, and \(c_2 \) is \(S \).

46. Define a \(2 \times 2 \) matrix whose columns are the vectors \(\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} 1 \\ 1/2 \end{bmatrix} \) from Exercise 43. As you learned in Tuesday’s lecture, this matrix (called \(T \)) converts \(R, S \)-coordinates into ordinary \(X, Y \)-coordinates, in the following way:

\[
\begin{bmatrix} X \\ Y \end{bmatrix} = T \begin{bmatrix} R \\ S \end{bmatrix}
\]

(1)

Verify this for the point \((2, 3)\) by taking the values of \(R \) and \(S \) (\(c_1 \) and \(c_2 \)) that you found for this point in Exercise 43, and “converting” those \(R, S \)-coordinates back into \(X, Y \)-coordinates. What do you notice? Do this for two of the other points from Exercise 43 as well.

47. (Non-Sage problem) Expand the vector equation (1) into a system of two equations, and solve simultaneously for \(R \) and \(S \) in terms of \(X \) and \(Y \). Once you have done this, rewrite your result in the form of a vector/matrix equation again, that is, in the form

\[
\begin{bmatrix} R \\ S \end{bmatrix} = W \begin{bmatrix} X \\ Y \end{bmatrix}
\]

(2)

for some matrix \(W \). You probably want to do this on paper, but when you’re finished, enter the matrix \(W \) that you found into Sage.

48. Just as the matrix \(T \) converts \(R, S \)-coordinates into \(X, Y \)-coordinates (equation (1)), the matrix \(W \) you found in Exercise 47 converts \(X, Y \)-coordinates into \(R, S \)-coordinates (equation (2)). Use this to find the \(R, S \)-coordinates for the point \((1, -6)\). To check that you’ve found the right \(R, S \)-coordinates, go back to your interactive from Exercise 43, and make \((1, -6)\) the target point. Use the \(R \) and \(S \) that you’ve found here as your \(c_1 \) and \(c_2 \), and see if you hit the target.

49. Repeat the previous exercise for some other point.

50. Since \(W \) does exactly the opposite of what \(T \) does, the \(W \) matrix is called the inverse of the \(T \) matrix. Sage can compute the inverse of a matrix quickly and easily. If \(A \) is an \(n \times n \) matrix in Sage, then \(A.invse() \) will give the inverse of \(A \). Use this to compute the inverse of the matrix \(T \) (from Exercise 46). Compare the result to Exercise 47.
51. The matrix \(\mathbf{M} = \begin{bmatrix} 7 & -4 \\ 4 & -3 \end{bmatrix} \) has eigenvectors \(\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \), the same vectors we have been using here. Using Sage or hand calculations, verify that these are the eigenvectors of \(\mathbf{M} \), and find the eigenvalue corresponding to each one.

52. Recall that we now have three linear functions, each with a corresponding matrix:

- The function that converts \(R, S \)-coordinates to \(X, Y \)-coordinates, represented by the matrix \(\mathbf{T} \)
- The function \(f \left(\begin{bmatrix} X \\ Y \end{bmatrix} \right) = \begin{bmatrix} 7X - 4Y \\ 4X - 3Y \end{bmatrix} \), represented by the matrix \(\mathbf{M} \). Note that this function naturally operates on \(X, Y \)-coordinates.
- The function that converts \(X, Y \)-coordinates to \(R, S \)-coordinates, represented by the matrix \(\mathbf{W} \) (the inverse of \(\mathbf{T} \))

To figure out how the function \(f \) operates on \(R, S \)-coordinates, we need to compose these three functions:

\[
\begin{bmatrix} R \\ S \end{bmatrix}_{\text{input}} \xrightarrow{\text{convert coords}} \begin{bmatrix} X \\ Y \end{bmatrix}_{\text{input}} \xrightarrow{f} \begin{bmatrix} X \\ Y \end{bmatrix}_{\text{output}} \xrightarrow{\text{convert back}} \begin{bmatrix} R \\ S \end{bmatrix}_{\text{output}}
\]

Use Sage to compute the matrix of this composition of functions. What do you notice about the result?