Soc. And is this in any way different from knowledge?
Theaet. What?
Soc. Wisdom. Isn't it the things which they know that men are wise about?
Theaet. Well, yes.
Soc. So knowledge and wisdom will be the same thing?
Theaet. Yes.
Soc. Now this is just where my difficulty comes in. I can't get a proper grasp of what on earth knowledge really is. Could we manage to put it into words? What do all of you say? Who'll speak first? Anyone who makes a mistake shall sit down and be Donkey, as the children say when they are playing ball; and anyone who comes through without a miss shall be King and make us answer any question he likes.—Well, why this silence? Theodorus, I hope my love of argument is not making me forget my manners—just because I'm so anxious to start a discussion and get us all friendly and talkative together?

Theod. No, no, Socrates—that's the last thing one could call forgetting your manners. But do make one of the young people answer you. I am not used to this kind of discussion, and I'm too old to get into the way of it. But it would be suitable enough for them and they would profit more by it. For youth can always profit, that's true enough. So do go on; don't let Theaetetus off but ask him some more questions.

Soc. Well, Theaetetus, you hear what Theodorus says. You won't want to disobey him, I'm sure; and certainly a wise man shouldn't be disobeyed by his juniors in matters of this kind—it wouldn't be at all the proper thing. Now give me a good frank answer. What do you think knowledge is?
Theaet. Well, I ought to answer, Socrates, as you and Theodorus tell me to. In any case, you and he will put me right, if I make a mistake.

Soc. We certainly will, if we can.
Theaet. Then I think that the things Theodorus teaches are knowledge—I mean geometry and the subjects you enumerated just now. Then again there are the crafts such as cobbling, whether you take them together or separately. They must be knowledge, surely.
Soc. That is certainly a frank and indeed a generous answer, my dear lad. I asked you for one thing and you have given me many; I wanted something simple, and I have got a variety.
Theaet. And what does that mean, Socrates?
tion about clay, for example, it would presumably be possible to make the simple, commonplace statement that it is earth mixed with liquid, and let the question of whose clay it is take care of itself.

Theaet. That seems easier, Socrates, now you put it like that. But I believe you’re asking just the sort of question that occurred to your namesake Socrates here and myself, when we were having a discussion a little while ago.

Soc. And what was that, Theaetetus?

Theaet. Theodorus here was demonstrating to us with the aid of diagrams a point about powers. He was showing us that the power of 3 square feet and the power of 5 square feet are not commensurable in length with the power of 1 square foot; and he went on in this way, taking each case in turn till he came to the power of 17 square feet; there for some reason he stopped. So the idea occurred to us that, since the powers were turning out to be unlimited in number, we might try to collect the powers in question under one term, which would apply to them all.

Soc. And did you find the kind of thing you wanted?

Theaet. I think we did. But I’d like you to see if it’s all right.

Soc. Go on, then.

Theaet. We divided all numbers into two classes. Any number which can be produced by the multiplication of equal numbers, we

2. Socrates the Younger, one of the group of friends with whom Theaetetus entered at the beginning. In later life he was a member of Plato’s Academy.

3. A mathematical term for squares. By contrast, at 148ab ‘power’ is given a new, specially defined use to denominate a species of line, viz. the incommensurable lines for which the boys wanted a generic account. It may be useful to give a brief explanation of the mathematics of the passage.

Two lines are incommensurable if and only if they have no common measure; that is, no unit of length will measure both without remainder. Two squares are incommensurable in length if and only if their sides are incommensurable lines; the areas themselves may still be commensurable, i.e. both measurable by some unit of area, as is mentioned at 148b. When Theodorus showed for a series of powers (squares) that each is incommensurable in length with the one foot (unit) square, we can think of him as proving case by case the irrationality of \(\sqrt{2}, \sqrt{3}, \ldots, \sqrt{17}\). But this was not how he thought of it himself. Greek mathematicians did not recognize irrational numbers but treated of irrational quantites as geometrical entities; in this instance, lines identified by the areas of the squares that can be constructed on them. Similarly, we can think of the boys’ formula for power or square lines at 148ab as making the point that, for any positive integer \(n\), \(\sqrt{n}\) is irrational if and only if there is no positive integer \(m\) such that \(n = m \times m\). But, once again, a Greek mathematician would think of this generalization in the geometrical terms in which Theaetetus expounds it.

compared to a square in shape, and we called this a square or equilateral number.

Soc. Good, so far.

Theaet. Then we took the intermediate numbers, such as three and five and any number which can’t be produced by multiplication of equals but only by multiplying together a greater and a less; a number such that it is always contained by a greater and a less side. A number of this kind we compared to an oblong figure, and called it an oblong number.

Soc. That’s excellent. But how did you go on?

Theaet. We defined under the term ‘length’ any line which produces in square an equilateral plane number; while any line which produces in square an oblong number we defined under the term ‘power’, for the reason that, although it is incommensurable with the former in length, the plane figures which they respectively have the power to produce are commensurable. And there is another distinction of the same sort with regard to solids.

Soc. Excellent, my boys. I don’t think Theodorus is likely to be had up for false witness.

Theaet. And yet, Socrates, I shouldn’t be able to answer your question about knowledge in the same way that I answered the one about lengths and powers—though you seem to me to be looking for something of the same sort. So Theodorus turns out a false witness after all.

Soc. Well, but suppose now it was your running he had praised; suppose he had said that he had never met anyone among the young people who was such a runner as you. And then suppose you were beaten by the champion runner in his prime—would you think Theodorus’ praise had lost any of its truth?

Theaet. No, I shouldn’t.

Soc. But do you think the discovery of what knowledge is is really what I was saying just now—a small thing? Don’t you think that’s a problem for the people at the top?

Theaet. Yes, rather, I do; and the very topmost of them.

Soc. Then do have confidence in yourself and try to believe that Theodorus knew what he was talking about. You must put your whole heart into what we are doing—in particular into this matter of getting a statement of what knowledge really is.

Theaet. If putting one’s heart into it is all that is required, Socrates, the answer will come to light.

Soc. Go on, then. You gave us a good lead just now. Try to imitate your answer about the powers. There you brought together