Problem 1

In the standard SI units, the electric constant \(\varepsilon_0 = 8.854 \times 10^{-12} \text{ s}^2 \cdot \text{C}^2 \cdot \text{m}^{-3} \cdot \text{kg}^{-1} \). In the rationalized system of SI units, one sets \(\varepsilon_0 = 1 \). Express the proton electric charge \(e = 1.602 \times 10^{-19} \text{ C} \) in this system in terms of units (kg, m, s). In the natural units, one sets \(\hbar = c = 1 \). What is proton electric charge \(e \) in the natural units?

In SI units, Coulomb is an independent unit, while in rationalized SI units, it is NOT.

In standard SI units:
\[
\varepsilon_0 = 8.854 \times 10^{-12} \text{ s}^2 \cdot \text{C}^2 \cdot \text{m}^{-3} \cdot \text{kg}^{-1}
\]

In rationalized SI units:
\[
\varepsilon_0 = 1
\]

Consequently,
\[
1 = 8.854 \times 10^{-12} \text{ s}^2 \cdot \text{C}^2 \cdot \text{m}^{-3} \cdot \text{kg}^{-1}
\]

\[
\Rightarrow 1 \text{C}^2 = \frac{1}{8.854 \times 10^{-12}} \text{ s}^2 \cdot \text{m}^3 \cdot \text{kg}
\]

\[
\Rightarrow 1 \text{C} = \frac{1}{\sqrt{8.854 \times 10^{-12}}} \text{ kg}^{\frac{1}{2}} \cdot \text{s}^{-1} \cdot \text{m}^{\frac{1}{2}} \approx 3.36 \times 10^5 \text{ kg}^{\frac{1}{2}} \cdot \text{s}^{-1} \cdot \text{m}^{\frac{1}{2}}
\]

Proton charge in SI units, \(e = 1.602 \times 10^{-19} \text{ C} \)

In rationalized SI units:
\[
e = 1.602 \times 10^{-19} \times 3.36 \times 10^5 \text{ kg}^{\frac{1}{2}} \cdot \text{s}^{-1} \cdot \text{m}^{\frac{1}{2}} = 5.38 \times 10^{-14} \text{ kg}^{\frac{1}{2}} \cdot \text{s}^{-1} \cdot \text{m}^{\frac{1}{2}}
\]

In natural units \(\hbar = c = 1 \):
\[
\alpha = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{\hbar c} = \frac{1}{137}
\]

\[
\Rightarrow e = \sqrt{\frac{4\pi \varepsilon_0}{137}} = 9.01 \times 10^{-7} \text{ C} \cdot \text{m}^{\frac{1}{2}} \cdot \text{kg}^{-\frac{1}{2}}
\]

“Rationalized” system: in natural units \(\hbar = c = 1 \), also \(\varepsilon_0 = 1 \):

\[
\alpha = \frac{e^2}{4\pi} \Rightarrow e = \frac{4\pi}{137} \Rightarrow e \approx 0.3028
\]
Problem 2

In the standard SI units, the Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1} = 8.62 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$. However, in the natural units, one sets $k_B = 1$. Why can one set $k_B = 1$? What does it mean? In such a unit system, express the temperature 100 K in terms of eV.

<table>
<thead>
<tr>
<th>In the same way, in standard SI system Kelvin and eV are independent units. Nevertheless, if we put $k_B = 1$ they are not independent anymore, the temperature is measured in the units of energy.</th>
<th>Such a system of units is used, for instance, in Cosmology where it is convenient. In different epochs with different temperatures different types of fields dominate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 = k_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1} = 8.62 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$</td>
<td>$100 = k_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1} = 8.62 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$</td>
</tr>
<tr>
<td>$\Rightarrow K = 8.62 \times 10^{-5} \text{ eV}$</td>
<td>$\Rightarrow 100K = 8.62 \times 10^{-3} \text{ eV}$</td>
</tr>
</tbody>
</table>
Problem 3

If the kinetic energy of the α particles is 4 MeV, what is their velocity v if you assume them to be nonrelativistic? How large an error do you make in neglecting special relativity in the calculation of v?

Nonrelativistically,

$$T = \frac{1}{2}mv^2$$
$$v = \sqrt{\frac{2T}{m}}$$
$$v \approx 1389389\text{m/s}$$

Relativistically,

$$T = (\gamma - 1)mc^2$$
$$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 1 + \frac{T}{mc^2}$$
$$v = c \sqrt{1 - \frac{1}{(1 + \frac{T}{mc^2})^2}}$$
$$v \approx 13887214\text{m/s}$$

The error between these two values may be expressed as

$$\text{error} = \frac{v_R - v_{NR}}{v_R}$$
$$\text{error} \approx .08\%$$
Problem 4

An electron of momentum $0.511 \text{ MeV}/c$ is observed in the laboratory. What are its $\beta = v/c$, $\gamma = (1 - \beta^2)^{-1/2}$, kinetic energy, and total energy?

| Rest mass of the electron, $m = 0.511 \text{MeV}/c^2$ ⇒ $m \cdot c^2 = 0.511 \text{MeV}$ |
|-----------------|-----------------|
| Momentum of the electron, $p = 0.511 \text{MeV}/c$ ⇒ $p \cdot c = 0.511 \text{MeV}$ |
| As the electron is fairly relativistic, energy $E = \sqrt{p^2 \cdot c^2 + m^2 \cdot c^4} = \sqrt{(0.511)^2 + (0.511)^2 \text{MeV}} = \sqrt{2} \cdot 0.511 \text{MeV} = 0.722 \text{MeV} = \sqrt{2}m \cdot c^2$ |
| Also $E = \gamma \cdot m \cdot c^2$ ⇒ $\gamma = \sqrt{2}$ |
| $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$ ⇒ $\beta = \sqrt{1 - \frac{1}{\gamma}}$ ⇒ $\beta = \frac{1}{\sqrt{2}} = 0.707$ |
| Kinetic energy $T = (\gamma - 1) \cdot m \cdot c^2 = (\sqrt{2} - 1) \cdot 0.511 \text{MeV} = 0.211 \text{MeV}$ |
Problem 5

In Rutherford scattering experiment as shown in Fig. 1, an α-particle with the mass m and the initial velocity v is scattering from an atomic nucleus of charge $+Ze$ and mass M. Please answer the following questions.

(a) Assuming the α-particle is deflected from its original direction by an angle θ as shown in the figure. Please derive the change in its momentum: Δp.

Before and after the scattering, by conservation of energy, the α-particle will have momentum mv. These two momenta may be thought of as the legs of an isosceles triangle with an angle θ between them. Therefore, the change in the momentum, Δp, is equal to the other side of this triangle: $2mv \sin \frac{\theta}{2}$.

(b) Derive a formula for the closest distance r_{min} between the α-particle and the nucleus.

Assuming that the impact parameter, b, is zero, here I set the initial kinetic energy equal to the potential energy at the distance r_{min}.

\[
\frac{1}{2}mv^2 = \frac{2Ze^2}{4\pi \varepsilon_0 r_{\text{min}}} \\
\Rightarrow r_{\text{min}} = \frac{Ze^2}{\pi \varepsilon_0 m v^2}
\]

Using the equation derived in lecture b
\[
\frac{A}{2\alpha_{\text{em}}} \cot \frac{\theta}{2},
\]
for scattering of 1°,

\[
b \approx \frac{(79)(197)(114.6)}{(7.7 \times 10^6)(137)} \text{ nm} \\
b \approx 1690 \text{ fm}
\]

For the case of 30°,

\[
b \approx \frac{(79)(197)(3.732)}{(7.7 \times 10^6)(137)} \text{ nm} \\
b \approx 55.2 \text{ fm}
\]

The ratio of probabilities may be calculated by taking the ratio of the cross sections.

\[
P = \frac{\int_0^\frac{\pi}{2} d\theta \sin \theta}{\int_0^\frac{\pi}{2} d\theta \sin \theta} \approx 943
\]