1 Reminder: regular Borel measures on \mathbb{R}

(From Lec 6, or Folland Sec 1.5)

Characterization of locally finite measures on $\mathcal{B}_{\mathbb{R}}$:

Theorem 1.1. If $F : \mathbb{R} \to \mathbb{R}$ is increasing and right-continuous, then there is a unique locally finite Borel measure μ_F on $\mathcal{B}_{\mathbb{R}}$ such that $\mu_F((a, b]) = F(b) - F(a)$ whenever $a < b$. Every locally finite Borel measure on \mathbb{R} arises this way, and we have $\mu_F = \mu_G$ iff $F - G$ is constant.

2 Lebesgue differentiation in one dimension

Using Theorem 1.1, we can interpret the Lebesgue differentiation theorems in one dimension in terms of the functions F. The result is actually closer to Lebesgue’s original version of the ‘differentiation theorem’.

Theorem 2.1. Let $F : \mathbb{R} \to \mathbb{R}$ be increasing, and let $G(x) = F(x^+)$.

a. The set of points at which F is discontinuous is countable.

b. F and G are differentiable a.e., and $F' = G'$ a.e.

Ideas.

1. The open intervals $(F(x^-), F(x^+))$ $(x \in \mathbb{R})$ are all disjoint, so at most countably many can be nonempty.

2. Differences of G-values can be expressed in terms of μ_G. Using this, G' is given a.e. by the Lebesgue differentiation theorem.
3. If $H = G - F$, then H is nonzero at only countably many points. Enumerate them, and make the corresponding sum of point masses. Applying Lebesgue differentiation to that sum gives $H' = 0$ a.e.

\[\square\]

3 Signed measures and functions of BV

Now let ν be a locally finite signed measure on \mathbb{R}. Then we can still look for a function F which satisfies

$$\nu((a,b]) = F(b) - F(a),$$

but now F need not be increasing, since ν may take negative values.

Jordan decomposition gives $\nu = \nu^+ - \nu^-$, and we already know we can write $\nu^\pm = \mu_{F^\pm}$, so

$$\nu((a,b]) = \nu^+((a,b]) - \nu^-((a,b]) = F(b) - F(a) \quad \text{where } F = F^+ - F^-.$$

So now the relevant functions F for representing signed measures are differences of right-continuous increasing functions.

But a given function F may be expressible as a difference of increasing functions in many different ways. On the other hand, finding one such expression in the first place may be difficult.

Next task: a more ‘intrinsic’ characterization of which functions may be expressed as above.

Warning: Folland tells the whole story for complex measures. But I’m going to restrict attention to finite signed measures — the ideas and outcomes are all essentially the same, but the explanation is a little simpler. There’s also a generalization to infinite but locally finite signed measures, but I’ll omit that too.

Definition 3.1. Given a function $F : \mathbb{R} \to \mathbb{R}$, its total variation function $T_F : \mathbb{R} \to [0, \infty]$. A function F having bounded variation; the space BV. Total variation on a closed bounded interval.

Example 3.2 (Folland 3.25).

1. Bounded and increasing $\implies BV$, and in fact $T_F(x) = F(x) - F(-\infty)$.

2. If $F, G \in BV$ and $a, b \in \mathbb{R}$ then $aF + bG \in BV$.

3. If F is differentiable on \mathbb{R} and F' is bounded, then F has bounded variation over any bounded interval.

4. The function $F(x) = \sin x$ has BV over any bounded interval, but not over the whole of \mathbb{R}.

5. The function
 $$F(x) := \begin{cases} x \sin(x^{-1}) & x > 0 \\ 0 & x \leq 0 \end{cases}$$
 is continuous, but does not have BV over $[a, b]$ for any $a \leq 0 < b$.

Lemma 3.3 (Folland 3.26). If $F \in BV$, then $T_F + F$ and $T_F - F$ are increasing.

Theorem 3.4 (Key part of Folland 3.27 for real-valued functions). If $F : \mathbb{R} \rightarrow \mathbb{R}$, then $F \in BV$ iff F is the difference of two bounded increasing functions. If $F \in BV$ then one such decomposition is
 $$\frac{1}{2}(T_F + F) - \frac{1}{2}(T_F - F).$$
 We call $\frac{1}{2}(T_F + F)$ (resp. $\frac{1}{2}(T_F - F)$) the **positive** (resp. **negative** variation) of F, and their combination as above is the **Jordan decomposition of F**. As far as I know, this decomposition is actually due to Jordan, and motivates the name 'Jordan decomposition' for our previous result about signed measures: see Folland’s exercise 3.29 for the connection.

Corollary 3.5 (Remainder of Folland 3.27 for real-valued functions). If $F \in BV$, then
 1. $F(x+)$ and $F(x-)$ exist for every x, and so do $F(\pm \infty)$;
 2. the set of points at which F is discontinuous is countable;
 3. if $G(x) = F(x+)$, then F' and G' exist and are equal a.e.

If ν and F are related as in (1), then F is determined only up to an arbitrary additive constant. The next definition removes this issue.

Definition 3.6. **Normalized** elements of BV; the space NBV. Observe that if $F \in BV$ and is right-continuous, then
 $$F(x) - F(-\infty) \in NBV.$$
We next check that Jordan decomposition preserves right-continuity.

Lemma 3.7 (Folland 3.28). If \(F \in BV \), then \(T_F(-\infty) = 0 \). If \(F \) is also right-continuous, then so is \(T_F \).

Putting the previous results together, we now have a precise correspondence between finite signed Borel measures and NBV functions. This is the ‘signed’ generalization of our earlier correspondence between finite positive measures and bounded increasing functions.

Theorem 3.8 (Folland 3.29 for finite signed measures). If \(\mu \) is a finite signed Borel measure on \(\mathbb{R} \) and \(F(x) = \mu(-\infty, x] \), then \(F \in NBV \). Conversely, if \(F \in NBV \), then there is a unique finite signed Borel measure \(\mu_F \) such that \(F(x) = \mu_F(-\infty, x] \), and \(|\mu_F| = \mu_{T_F} \) (last part is a homework exercise).