1 Example

Prove that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Proof. Let L_1 and L_2 be regular.
Then, there exist DFAs

\[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]
\[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea:
We will construct an NFA to recognize $L_1 \cup L_2$ by creating a new starting state and then having ϵ-transitions from this new starting state to the starting states of M_1 and M_2. N can then nondeterministically choose to follow either M_1 or M_2.

![Diagram of NFAs M1 and M2 with epsilon transitions to q0]

1 Proof

CS 181 Proof Example

Joe Bruin

May 23, 1919
More formally,
Let $N = (Q', \Sigma, \delta', q_0, F')$ be an NFA such that

$$\begin{align*}
Q' &= Q_1 \cup Q_2 \cup \{q_0\} \\
F' &= F_1 \cup F_2
\end{align*}$$

For $q \in Q', a \in \Sigma \cup \{\epsilon\}$,

$$\delta'(q, a) = \begin{cases} \\
\delta_1(q, a) & \text{if } q \in Q_1, a \neq \epsilon \\
\delta_2(q, a) & \text{if } q \in Q_2, a \neq \epsilon \\
\{q_1, q_2\} & \text{if } q = q_0, a = \epsilon \\
\emptyset & \text{else}
\end{cases}$$

Then, $L(N) = L_1 \cup L_2$ since

$L(N) \supseteq L_1 \cup L_2$ (i.e. if $x \in L_1 \cup L_2$, then $x \in L(N)$).
Let $x \in L_1 \cup L_2$. Then, $x \in L_1$ or $x \in L_2$.
Suppose $x \in L_1$. Then, $M_1(x)$ accepts. Thus, on input x, M_1 goes from the starting state q_1 to a state in F_1. Therefore, on input x, N can first go from state q_0 to q_1 on ϵ. Then, since N has the same transitions as M_1 when in states in Q_1, N can also go from state q_1 to a state in $F_1 \subseteq F'$ on input x. Thus, $N(x)$ accepts. Similarly, if $x \in L_2$, then $N(x)$ can go from q_0 to q_2 on input ϵ and then from q_2 to a state in $F_2 \in F'$ on input x. Therefore, $x \in L(N)$.

$L(N) \subseteq L_1 \cup L_2$ (i.e. if $x \in L(N)$, then $x \in L_1 \cup L_2$).
Let $x \in L(N)$. Then, on input x, N goes from state q_0 to a state $q' \in F'$. Since q_0 is not in F', then N must first transition out of q_0. But, the only transitions from q_0 are the ϵ-transitions to either q_1 or q_2. Suppose, without loss of generality, that N takes the transition to q_1. Then, on x, N goes from q_1 to a state $q' \in F'$. However, since N follows the transitions of M_1 when in states of Q_1, then the only states that N can reach from q_1 are states in M_1. Thus, $q' \in F' \cap Q_1 = F_1$. Therefore, on x, N goes from q_1 to a state in F_1 by following the same transitions and states as in M_1. But this means that $M_1(x)$ accepts. Now, suppose that N instead first transitioned from q_0 to q_2 on ϵ. By a similar argument, $M_2(x)$ accepts. Thus, $x \in L_1 \cup L_2$. \[\blacksquare\]