1. (a) Define \(\lim_{n \to \infty} s_n = s \in \mathbb{R} \). (b) Prove that if \(\lim_{n \to \infty} s_n = s \in \mathbb{R} \), then the set \(S = \{ s_n : n \in \mathbb{N} \} \) is bounded.

\[
\text{(5 points) (a) Given } \epsilon > 0 \text{ there exists } N \text{ such that } n > N \implies |s_n - s| < \epsilon.
\]

\[
\text{(15 points) (b) Given } \epsilon = 1 \text{ there exists } N \in \mathbb{N} \text{ such that } n > N \implies |s_n - s| < 1 \text{ so }
\]

\[
|s_n| = |s_n - s + s| \\
\leq |s_n - s| + |s| < 1 + |s|
\]

Therefore

\[
|s_n| \leq \max \{ |s|, \ldots, |s_N|, 1 + |s| \}
\]

for all \(n \in \mathbb{N} \).
2. (a) Define \(\lim_{n \to \infty} s_n = -\infty \). (b) Prove that if \(\lim_{n \to \infty} s_n = -\infty \) and \(\lim_{n \to \infty} t_n = t \in \mathbb{R} \), then \(\lim_{n \to \infty} (s_n + t_n) = -\infty \).

(5 points) (a) Given \(m < 0 \) there exists \(N \) such that \(n > N \) implies \(s_n < m \).

(15 points) (b) Since \(\{t_n : n \in \mathbb{N}\} \) is bounded (Problem 1), there exists \(B > 0 \) such that \(|t_n| < B \) for all \(n \in \mathbb{N} \) and thus \(-B < t_n < B \). Given \(m < 0 \) there exists \(N \) such that \(n > N \) implies \(s_n < m - B \). So \(s_n + t_n < (m - B) + B = m \) and therefore \(\lim_{n \to \infty} s_n + t_n = -\infty \).
3. Let S be a bounded subset of \mathbb{R}. (a) Define the infimum $\inf(S)$ of S. (b) Let $-S = \{ -s : s \in S \}$. Prove that $\inf(S) = -\sup(-S)$.

(5 points) (a) $s_0 = \inf(S)$ if $s_0 \leq s$ for all $s \in S$ and if t is a lower bound for S then $t \leq s_0$.

(15 points) (b) Since S is bounded, so is $-S$. Let $s_0 = \sup(-S)$ so $s_0 \geq -s$ for all $s \in S$ and thus $-s_0 \leq s$. Let t be a lower bound for S so $t \leq s$ for all $s \in S$. Then $-t \geq -s$ and since $-t$ is an upper bound for $-S$ then $-t \geq s_0$ and therefore $t \leq -s_0 = -\sup(-S)$ and $-\sup(-S) = \inf(S)$.
4. (a) Define \(\liminf s_n \). (b) Prove that if \(\lim_{n \to \infty} s_n = s \in \mathbb{R} \), then \(\liminf s_n \geq s \) by proving that \(\liminf s_n \geq s - \epsilon \) for all \(\epsilon > 0 \).

(5 points) (a) \(S_N = \{ s_n : n > N \} \), \(u_N = \inf(S_N) \)

\[\lim \inf s_n = \lim_{N \to \infty} u_N \]

(15 points) (b) Given \(\epsilon > 0 \) there exists \(N \) such that \(n > N \) implies \(|s_n - s| < \epsilon \) and therefore \(-\epsilon < s_n - s < \epsilon\) and \(s - \epsilon < s_n \) and \(s - \epsilon \) is a lower bound for \(S_N \). Then \(\inf(S_N) \geq s - \epsilon \). Since the sequence \((u_N) \) is increasing

\[\lim \inf s_n = \lim_{N \to \infty} u_N \geq s - \epsilon \]
5. Let \(S \subseteq \mathbb{R} \) be a nonempty bounded subset such that \(s_0 = \sup(S) \notin S \). Prove that there exists an increasing sequence \((s_n) \subseteq S\) such that \(\lim_{n \to \infty} s_n = s_0 \).

By the definition of supremum, there exists \(s_1 \in S \) such that \(s_0 - 1 < s_1 < s_0 \).

Assume that there exist \(s_1 < s_2 < \ldots < s_n \), all in \(S \), such that \(s_0 - \frac{1}{n} < s_j < s_0 \) for \(j = 1, \ldots, n \). There exists \(s_{n+1} \in S \) such that

\[
\max \{ s_0 - \frac{1}{n+1}, s_n \} < s_{n+1} < s_0.
\]

Therefore \((s_n)\) exists by induction and \(\lim_{n \to \infty} s_n = s_0 \) by the Squeeze Theorem.