1. OVERVIEW OF LIMIT THEOREMS

The primary subject in this note is the sequence of i.i.d. RVs and their partial sums. Namely, let X_1, X_2, \cdots be an (infinite) sequence of i.i.d. RVs, and define their nth partial sum $S_n = X_1 + X_2 + \cdots + X_n$ for all $n \geq 1$. If we call X_i the ith step size or increment, then the sequence of RVs $(S_n)_{n \geq 1}$ is called a random walk, where we usually set $S_0 = 0$. Think of X_i as the gain or loss after betting once in a casino. Then S_n is the net gain of fortune after betting n times. Of course there are ups and downs in the short term, but what we want to analyze using probability theory is the long-term behavior of the random walk $(S_n)_{n \geq 1}$. Results of this type is called limit theorems.

\[E \left(\frac{S_n}{n} \right) = \frac{E[S_n]}{n} = \mu, \quad \text{(1)} \]
\[\text{Var} \left(\frac{S_n}{n} \right) = \frac{\text{Var}(S_n)}{n^2} = \frac{n \text{Var}(X_1)}{n^2} = \frac{\text{Var}(X_1)}{n}. \quad \text{(2)} \]

So the sample mean S_n/n has constant expectation and shrinking variance. Hence it makes sense to guess that it should behave as the constant μ, without taking the expectation. That is,

\[\lim_{n \to \infty} \frac{S_n}{n} = \mu. \quad \text{(3)} \]
But this expression is shaky, since the left hand side is a limit of RVs while the right hand side is a constant. In what sense the random sample means converge to \(\mu \)? This is the content of the law of large numbers, for which we will prove a weak and a strong versions.

The first limit theorem we will encounter is called the Weak Law of Large Numbers (WLLN), which is stated below:

Theorem 1.1 (WLLN). Let \((X_k)_{k\geq 1}\) be i.i.d. RVs with mean \(\mu < \infty \) and let \(S_n = \sum_{k=1}^{n} X_i, \ n \geq 1 \) be a random walk. Then for any positive constant \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \Pr \left(\frac{S_n}{n} - \mu > \varepsilon \right) = 0. \tag{4}
\]

In words, the probability that the sample mean \(S_n/n \) is not within \(\varepsilon \) distance from its expectation \(\mu \) decays to zero as \(n \) tends to infinity. In this case, we say the sequence of RVs \((S_n/n)_{n \geq 1} \) converges to \(\mu \) in probability.

The second version of law of large numbers is call the strong law of large numbers (SLLN), which is available if the increments have finite variance.

Theorem 1.2 (SLLN). Let \((X_k)_{k\geq 1}\) be i.i.d. RVs and let \(S_n = \sum_{k=1}^{n} X_i, \ n \geq 1 \) be a random walk. Suppose \(\mathbb{E}[X_1] = \mu < \infty \) and \(\mathbb{E}[X_1^2] < \infty \). Then

\[
\Pr \left(\lim_{n \to \infty} \frac{S_n}{n} = \mu \right) = 1. \tag{5}
\]

To make sense out of this, notice that the limit of sample mean \(\lim_{n \to \infty} S_n/n \) is itself a RV. Then SLLN says that this RV is well defined and its value is \(\mu \) with probability 1. In this case, we say the sequence of RVs \((S_n/n)_{n \geq 1} \) converges to \(\mu \) with probability 1 or almost surely.

Perhaps one of the most celebrated theorems in probability theory is the central limit theorem (CLT), which tells about how the sample mean \(S_n/n \) “fluctuates” around its mean \(\mu \). From 2, if we denote \(\sigma^2 = \text{Var}(X_1) < \infty \), we know that \(\text{Var}(S_n/n) = \sigma^2/n \to 0 \) as \(n \to \infty \). So the fluctuation decays as we add up more increments. To see the effect of fluctuation, we first center the sample mean by subtracting its expectation and “zoom in” by dividing by the standard deviation \(\sigma/\sqrt{n} \). This is where the name ‘central limit’ comes from: it describes the limit of centered random walks.

Theorem 1.3 (CLT). Let \((X_k)_{k\geq 1}\) be i.i.d. RVs and let \(S_n = \sum_{k=1}^{n} X_i, \ n \geq 1 \) be a random walk. Suppose \(\mathbb{E}[X_1] = \mu < \infty \) and \(\mathbb{E}[X_1^2] = \sigma^2 < \infty \). Let \(Z \sim \mathcal{N}(0,1) \) be a standard normal RV and define

\[
Z_n = \frac{S_n - \mu n}{\sigma \sqrt{n}} = \frac{S_n/n - \mu}{\sigma/\sqrt{n}}. \tag{6}
\]

Then for all \(z \in \mathbb{R} \),

\[
\lim_{n \to \infty} \Pr(Z_n \leq z) = \Pr(Z \leq z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} \, dx. \tag{7}
\]

In words, the centered and rescaled RV \(Z_n \) is asymptotically distributed as a standard normal RV \(Z \sim \mathcal{N}(0,1) \). In this case, we say \(Z_n \) converges to \(Z \) as \(n \to \infty \) in distribution. This is a remarkable result since as long as the increments \(X_k \) have finite mean and variance, it does not matter which distribution that they follow: the ‘central limit’ always looks like a standard normal distribution. Later in this section, we will prove this result by using the MGF of \(S_n \) and Taylor-expanding it up to the second order term.
In 170A, we will only study the Weak Law of Large Numbers and the Central Limit Theorem in a very special case when \(X_i \)'s are Binomial RVs.

2. **Bounding Tail Probabilities**

In this subsection, we introduce two general inequalities called the Markov's and Chebyshev's inequalities. They are useful in bounding tail probabilities of the form \(P(X \geq x) \) using the expectation \(E[X] \) and variance \(\text{Var}(X) \), respectively. Their proofs are quite simple but they have lots of nice applications and implications.

Proposition 2.1 (Markov's inequality). *Let \(X \geq 0 \) be a nonnegative RV with finite expectation. Then for any \(a > 0 \), we have*

\[
P(X \geq a) \leq \frac{E[X]}{a}.
\]

*Proof. Consider an auxiliary RV \(Y \) defined as follows:

\[
Y = \begin{cases}
a & \text{if } X \geq a \\
0 & \text{if } X < a.
\end{cases}
\]

Note that we always have \(Y \leq X \). Hence we should have \(E[Y] \leq E[X] \). But since \(E[Y] = aP(X \geq a) \),

\[
\lambda P(X \geq a) \leq E[X].
\]

Dividing both sides by \(a > 0 \) gives the assertion. □

Example 2.2. We will show that, for any RV \(Z \), \(E[Z^2] = 0 \) implies \(P(Z = 0) = 1 \). Indeed, Markov's inequality gives that for any \(a > 0 \),

\[
P(Z^2 \geq a) \leq \frac{E[Z^2]}{a} = 0.
\]

This means that \(P(Z^2 = 0) = 1 \), so \(P(Z = 0) = 1 \). ▲

Proposition 2.3 (Chebyshev's inequality). *Let \(X \) be any RV with \(E[X] = \mu < \infty \) and \(\text{Var}(X) < \infty \). Then for any \(a > 0 \), we have*

\[
P(|X - \mu| \geq a) \leq \frac{\text{Var}(X)}{a^2}.
\]

*Proof. Applying Markov's inequality for the nonnegative RV \((X - \mu)^2 \), we get

\[
P(|X - \mu| \geq a) = P((X - \mu)^2 \geq a^2) \leq \frac{E[(X - \mu)^2]}{a^2} = \frac{\text{Var}(X)}{a^2}.
\]

□

Example 2.4. Let \(X \sim \text{Exp}(\lambda) \). Since \(E[X] = 1/\lambda \), for any \(a > 0 \), the Markov's inequality gives

\[
P(X \geq a) \leq \frac{1}{a\lambda},
\]

while the true probability is

\[
P(X \geq a) = e^{-\lambda a}.
\]
On the other hand, \(\text{Var}(X) = 1/\lambda^2 \) so Chebyshev’s inequality gives

\[
P(|X - 1/\lambda| \geq a) = \frac{1}{a^2 \lambda^2}.
\]

(16)

If \(1/\lambda \leq a \), the true probability is

\[
P(|X - 1/\lambda| \geq a) = P(X \geq a + 1/\lambda) + P(X \leq -a + 1/\lambda)
\]

\[
= P(X \geq a - 1/\lambda) = e^{-\lambda(a-1/\lambda)} = e^{1-\lambda a}.
\]

(17)

(18)

As we can see, both Markov’s and Chebyshev’s inequalities give loose estimates, but the latter gives a slightly stronger bound. ▲

Example 2.5 (Chebyshev’s inequality for bounded RVs). Let \(X \) be a RV taking values from the interval \([a, b]\). Suppose we don’t know anything else about \(X \). Can we say anything useful about tail probability \(P(X \geq \lambda) \)? If we were to use Markov’s inequality, then certainly \(a \leq E[X] \leq b \) and in the worst case \(E[X] = b \). Hence we can at least conclude

\[
P(X \geq \lambda) \leq \frac{b}{\lambda}.
\]

(19)

On the other hand, let’s get a bound on \(\text{Var}(X) \) and use Chebyshev’s inequality instead. We claim that

\[
\text{Var}(X) \leq \frac{(b-a)^4}{4},
\]

(20)

which would yield by Chebyshev’s inequality that

\[
P(|X - E[X]| \leq \lambda) \leq \frac{(b-a)^2}{4\lambda^2}.
\]

(21)

Intuitively speaking, \(\text{Var}(X) \) is the largest when the value of \(X \) is as much spread out as possible at the two extreme values, \(a \) and \(b \). Hence the largest variance will be achieved when \(X \) takes \(a \) and \(b \) with equal probabilities. In this case, \(E[X] = (a+b)/2 \) so

\[
\text{Var}(X) = E[X^2] - E[X]^2 = \frac{a^2 + b^2}{2} - \frac{(a+b)^2}{4} = \frac{(b-a)^2}{4}.
\]

(22)

▲

Exercise 2.6. Let \(X \) be a RV taking values from the interval \([a, b]\).

(i) Use the usual ‘completing squares’ trick for a second moment to show that

\[
0 \leq E[(X - t)^2] = (t - E[X])^2 + \text{Var}(X) \quad \forall t \in \mathbb{R}.
\]

(23)

(ii) Conclude that \(E[(X - t)^2] \) is minimized when \(t = E[X] \) and the minimum is \(\text{Var}(X) \).

(iii) By plugging in \(t = (a+b)/2 \) in (23), show that

\[
\text{Var}(X) = E[(X - a)(X - b)] + \frac{(b-a)^2}{4} - \left(E[X] - \frac{a+b}{2} \right)^2.
\]

(24)

(iv) Show that \(E[(X - a)(X - b)] \leq 0 \).

(v) Conclude that \(\text{Var}(X) \leq (b-a)^2/4 \), where the equality holds if and only if \(X \) takes the extreme values \(a \) and \(b \) with equal probabilities.
3. THE WLLN AND CONVERGENCE IN PROBABILITY

In this subsection, we prove the weak law of large numbers (Theorem 1.1) and study the notion of convergence in probability. Assuming finite variance for each increment, the weak law is an easy consequence of Chebyshev’s inequality.

Theorem 3.1 (WLLN with second moment). Let \((X_k)_{k \geq 1}\) be i.i.d. RVs with finite mean \(\mu < \infty\) and finite variance. Let \(S_n = \sum_{k=1}^{n} X_k, n \geq 1\). Then for any positive constant \(\varepsilon > 0\),

\[
\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \mu \right| > \varepsilon \right) = 0. \tag{25}
\]

Proof. By Chebyshev’s inequality, for any \(\varepsilon > 0\) we have

\[
\mathbb{P}\left(\left| \frac{S_n}{n} - \mu \right| > \varepsilon \right) \leq \frac{\text{Var}(S_n/n)}{\varepsilon^2} = \frac{\text{Var}(X_1)}{n\varepsilon^2}, \tag{26}
\]

where the last expression converges to 0 as \(n \to \infty\). \(\square\)

The proof of the full WLLN without the finite second moment assumption needs another technique called ‘truncation’. We won’t cover this technicality in this course and take Theorem 1.1 for granted.

The weak law of large numbers is the first time that we encounter the notion of ‘convergence in probability’. We say a sequence of RVs converge to a constant in probability if the the probability of staying away from that constant goes to zero:

Definition 3.2. Let \((X_n)_{n \geq 1}\) be a sequence of RVs and let \(\mu \in \mathbb{R}\) be a constant. We say \(X_n\) converges to \(\mu\) in probability if for each \(\varepsilon > 0\),

\[
\lim_{n \to \infty} \mathbb{P}\left(|X_n - \mu| > \varepsilon \right) = 0. \tag{27}
\]

Before we proceed further, let us take a moment and think about the definition of convergence in probability. Recall that a sequence of real numbers \((x_n)_{n \geq 0}\) converges to \(x\) if for each ‘error level’ \(\varepsilon > 0\), there exists a large integer \(N(\varepsilon) > 0\) such that

\[
|x_n - x| < \varepsilon \quad \forall n \geq N(\varepsilon). \tag{28}
\]

If we would like to say that a sequence of RVs \((X_n)_{n \geq 0}\) ‘converges’ to some real number \(x\), how should we formulate this? Since \(X_n\) is an RV, \(|X_n - x| < \varepsilon\) is an event. On the other hand, we can also view each \(x_n\) as an RV, even though it is a real number. Then we can rewrite (28) as

\[
\mathbb{P}(|X_n - x| < \varepsilon) = 1 \quad \forall n \geq N(\varepsilon). \tag{29}
\]

For general RVs, requiring \(\mathbb{P}(|X_n - x| < \varepsilon) = 1\) for any large \(n\) might not be possible. But we can fix any desired level of ‘confidence’, \(\delta > 0\), and require

\[
\mathbb{P}(|X_n - x| < \varepsilon) \geq 1 - \delta \tag{30}
\]

for sufficiently large \(n\). This is precisely (27).

Example 3.3 (Empirical frequency). Let \(A\) be an event of interest. We would like to estimate the unknown probability \(p = \mathbb{P}(A)\) by observing a sequence of independent experiments. namely, let \((X_k)_{k \geq 0}\) be a sequence of i.i.d. RVs where \(X_k = 1(A)\) is the indicator variable of the event \(A\) for each \(k \geq 1\). Let \(\hat{p}_n := (X_1 + \cdots + X_n)/n\). Since \(\mathbb{E}[X_1] = \mathbb{P}(A) = p\), by WLLN we conclude that, for any \(\varepsilon > 0\),

\[
\mathbb{P}(|\hat{p}_n - p| > \varepsilon) \to 0 \quad \text{as } n \to \infty. \tag{31}
\]
Example 3.4 (Polling). Let E_A be the event that a randomly select voter supports candidate A. Using a poll, we would like to estimate $p = \mathbb{P}(E_A)$, which can be understood as the proportion of supporters of candidate A. As before, we observe a sequence of i.i.d. indicator variables $X_k = 1(E_A)$. Let $\hat{p}_n := S_n/n$ be the empirical proportion of supporters of A out of n samples. We know by WLLN that \hat{p}_n converges to p in probability. But if we want to guarantee a certain confidence level α for an error bound ϵ, how many samples should be take?

By Chebyshev’s inequality, we get the following estimate:

$$\mathbb{P}\left(\left|\hat{p}_n - p\right| > \epsilon\right) \leq \frac{\text{Var}(\hat{p}_n)}{\epsilon^2} = \frac{\text{Var}(X_1)}{n \epsilon^2} \leq \frac{1}{4n \epsilon^2}.$$ \hspace{1cm} (32)

Note that for the last inequality, we noticed that by WLLN that \hat{p}_n converges to p in probability. But if we want to guarantee a certain confidence level α for an error bound ϵ, how many samples should be take?

By Chebyshev’s inequality, we get the following estimate:

$$\mathbb{P}\left(\left|\hat{p}_n - p\right| > \epsilon\right) \leq \frac{\text{Var}(\hat{p}_n)}{\epsilon^2} = \frac{\text{Var}(X_1)}{n \epsilon^2} \leq \frac{1}{4n \epsilon^2}.$$ \hspace{1cm} (32)

Note that for the last inequality, we noticed that by WLLN that \hat{p}_n converges to p in probability. But if we want to guarantee a certain confidence level α for an error bound ϵ, how many samples should be take?

By Chebyshev’s inequality, we get the following estimate:

$$\mathbb{P}\left(\left|\hat{p}_n - p\right| > \epsilon\right) \leq \frac{\text{Var}(\hat{p}_n)}{\epsilon^2} = \frac{\text{Var}(X_1)}{n \epsilon^2} \leq \frac{1}{4n \epsilon^2}.$$ \hspace{1cm} (32)

This yields $n \geq 50,000$. In other words, if we survey at least $n = 50,000$ independent voters, then the empirical frequency \hat{p}_n is between $p - 0.01$ and $p + 0.01$ with probability at least 0.95. Still in other words, the true frequency p is between $\hat{p}_n - 0.01$ and $\hat{p}_n + 0.01$ with probability at least 0.95 if $n \geq 50,000$. We don’t actually need this many samples. We will improve this result later using central limit theorem. ▲

Exercise 3.5 (Monte Carlo integration). Let $(X_k)_{k \geq 1}$ be i.i.d. Uniform([0, 1]) RVs and let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function. For each $n \geq 1$, let

$$I_n = \frac{1}{n} \left(f(X_1) + f(X_2) + \cdots + f(X_n) \right).$$ \hspace{1cm} (34)

(i) Suppose $\int_0^1 |f(x)| \, dx < \infty$. Show that $I_n \rightarrow I := \int_0^1 f(x) \, dx$ in probability.

(ii) Further assume that $\int_0^1 |f(x)|^2 \, dx < \infty$. Use Chebyshev’s inequality to show that

$$\mathbb{P}\left(\left|I_n - I\right| \geq a/\sqrt{n}\right) \leq \frac{\text{Var}(f(X_1))}{a^2} = \frac{1}{a^2} \left(\int_0^1 |f(x)|^2 \, dx - I^2 \right).$$ \hspace{1cm} (35)

Exercise 3.6. Let $(X_k)_{k \geq 0}$ be a sequence of i.i.d. Exp(λ) RVs. Define $Y_n = \min(X_1, X_2, \cdots, X_n)$.

(i) For each $\epsilon > 0$, show that $\mathbb{P}(\left|Y_n - 0\right| > \epsilon) = e^{-\lambda \epsilon n}$.

(ii) Conclude that $Y_n \rightarrow 0$ in probability as $n \rightarrow \infty$.

Example 3.7. For each integer $n \geq 1$, define a RV X_n by

$$X_n = \begin{cases} n & \text{with prob. } 1/n \\ 1/n & \text{with prob. } 1 - 1/n. \end{cases}$$ \hspace{1cm} (36)

Then $X_n \rightarrow 0$ in probability as $n \rightarrow \infty$. Indeed, for each $\epsilon > 0$,

$$\mathbb{P}(\left|X_n - 0\right| > \epsilon) = \mathbb{P}(X_n > \epsilon) = 1/n$$ \hspace{1cm} (37)

for all $n > 1/\epsilon$. Hence $\lim_{n \rightarrow \infty} \mathbb{P}(\left|X_n - 0\right| > \epsilon) = 0$. However, note that

$$\mathbb{E}[X_n] = 1 + n^{-1} - n^{-2} \rightarrow 1 \quad \text{as } n \rightarrow \infty.$$ \hspace{1cm} (38)
This example indicates that convergence in probability only cares about probability of the event \(P(|X_n - E[X_n]| > \epsilon) \) but not the actual value of \(X_n \) when that 'bad' event occurs.

4. Central Limit Theorem

Let \((X_t)_{t \geq 0}\) be a sequence of i.i.d. RVs with finite mean \(\mu \) and variance \(\sigma^2 \). Let \(S_n = X_1 + \cdots + X_n \) for \(n \geq 1 \). We have calculated the mean and variance of the sample mean \(S_n/n \):

\[
E[S_n/n] = \mu, \quad \text{Var}(S_n/n) = \sigma^2/n. \tag{39}
\]

Since \(\text{Var}(S_n/n) \to 0 \) as \(n \to \infty \), we expect the sequence of RVs \(S_n/n \) to converge its mean \(\mu \) in probability.

Central limit theorem is a limit theorem for the sample mean with different regime, namely, it describes the 'fluctuation' of the sample mean around its expectation, as \(n \to \infty \). For this purpose, we need to standardize the sample mean so that the mean is zero and variance is unit. Namely, let

\[
Z_n = \frac{S_n/n - \mu}{\sigma \sqrt{n}} = \frac{S_n/n - n\mu}{\sigma \sqrt{n}}, \tag{40}
\]

so that

\[
E[Z_n] = 0, \quad \text{Var}(Z_n) = 1. \tag{41}
\]

Since the variance is kept at 1, we should not expect the sequence of RVs \((Z_n)_{n \geq 0}\) converge to some constant in probability, as in the law of large number situation. Instead, \(Z_n \) should converge to some other RV, if it ever converges in some sense. Central limit theorem states that \(Z_n \) converges to the standard normal RV \(Z \sim N(0, 1) \) 'in distribution'.

Let us state the central limit theorem (Theorem 1.3).

Theorem 4.1 (CLT). Let \((X_k)_{k \geq 1}\) be i.i.d. RVs and let \(S_n = \sum_{k=1}^n X_i \), \(n \geq 1 \). Suppose \(E[X_1] < \infty \) and \(E[X_1^2] = \sigma^2 < \infty \). Let \(Z \sim N(0,1) \) be a standard normal RV and define

\[
Z_n = \frac{S_n/n - \mu}{\sigma \sqrt{n}} = \frac{S_n/n - n\mu}{\sigma \sqrt{n}}. \tag{42}
\]

Then \(Z_n \) converges to \(Z \) as \(n \to \infty \) in distribution, namely,

\[
\lim_{n \to \infty} P(Z_n \leq z) = P(Z \leq z). \tag{43}
\]

As a typical application of CLT, we can approximate Binomial\((n, p) \) variables by normal RVs.

Exercise 4.2. Let \((X_n)_{n \geq 1}\) be a sequence of i.i.d. Bernoulli\((p) \) RVs. Let \(S_n = X_1 + \cdots + X_n \).

(i) Let \(Z_n = (S_n - np)/\sqrt{np(1-p)} \). Show that as \(n \to \infty \), \(Z_n \) converges to the standard normal RV \(Z \sim N(0, 1) \) in distribution.

(ii) Conclude that if \(Y_n \sim \text{Binomial}(n, p) \), then

\[
\frac{Y_n - np}{\sqrt{np(1-p)}} \Rightarrow Z \sim N(0,1). \tag{44}
\]

(iii) From (ii), deduce that have the following approximation

\[
P(Y_n \leq x) \approx P \left(Z \leq \frac{x - np}{\sqrt{np(1-p)}} \right), \tag{45}
\]
which becomes more accurate as $n \to \infty$.

Example 4.3 (Polling revisited). Let $(X_n)_{n \geq 1}$ be a sequence of i.i.d. Bernoulli(p) RVs. Denote $\hat{p}_n = n^{-1}(X_1 + \cdots + X_n)$. In Exercise 3.4, we used Chebyshev’s inequality to deduce that

$$\Pr(|\hat{p}_n - p| \leq 0.01) \geq 0.95$$

whenever $n \geq 50,000$. In this example, we will use CLT to improve this lower bound on n.

First, from Exercise 4.2, it is immediate to deduce the following convergence in distribution

$$\frac{\hat{p}_n - p}{\sqrt{p(1-p)/n}} \Rightarrow Z \sim N(0,1).$$

Hence for any $\varepsilon > 0$, we have

$$\Pr(|\hat{p}_n - p| \leq \varepsilon) = \Pr\left(\left|\frac{\hat{p}_n - p}{\sqrt{p(1-p)/n}}\right| \leq \frac{\varepsilon \sqrt{n}}{\sqrt{p(1-p)}}\right)$$

$$\geq \Pr\left(\left|\frac{\hat{p}_n - p}{\sqrt{p(1-p)/n}}\right| \leq 2\varepsilon \sqrt{n}\right)$$

$$\approx \Pr(|Z| \leq 2\varepsilon \sqrt{n}) = 2\Pr(0 \leq Z \leq 2\varepsilon \sqrt{n}),$$

where for the inequality we have used the fact that $p(1-p) \leq 1/4$ for all $0 \leq p \leq 1$. The last expression is at least 0.95 if and only if

$$\Pr(0 \leq Z \leq 2\varepsilon \sqrt{n}) \geq 0.475.$$ (51)

From the table of standard normal distribution, we know that $\Pr(0 \leq Z \leq 1.96) = 0.475$. Hence (51) holds if and only if $2\varepsilon \sqrt{n} \geq 1.96$, or equivalently,

$$n \geq \left(\frac{0.98}{\varepsilon}\right)^2.$$ (52)

For instance, $\varepsilon = 0.01$ gives $n \geq 9604$. This is a drastic improvement from $n \geq 50,000$ via Chebyshev.

Exercise 4.4. Let $X_1, Y_1, \cdots, X_n, Y_n$ be i.i.d. Uniform([0, 1]) RVs. Let

$$W_n = \frac{(X_1 + \cdots + X_n) - (Y_1 + \cdots + Y_n)}{n}.$$ (53)

Find a numerical approximation to the quantity

$$\Pr(|W_{20} - \mathbb{E}[W_{20}]| < 0.001).$$ (54)

5. The SLLN and Convergence with Probability 1

Let $(X_n)_{n \geq 1}$ be i.i.d. RVs with finite mean $\mathbb{E}[X_1] = \mu$ and let $S_n = X_1 + \cdots + X_n$ for all $n \geq 1$. The weak law of large numbers states that the sample mean S_n/n converges to μ in probability, that is,

$$\lim_{n \to \infty} \Pr\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) = 0 \quad \forall \varepsilon > 0.$$ (55)
On the other hand, the Strong Law of Large Numbers (SLLN) tells us that a similar statement holds where the limit is inside the probability bracket. Namely,
\[P \left(\lim_{n \to \infty} \frac{S_n}{n} - \mu > \varepsilon \right) = 0 \quad \forall \varepsilon > 0. \] (56)
If we view the limit on the left hand side as a RV, then (87) in fact states that this limit RV is 0 with probability 1:
\[P \left(\lim_{n \to \infty} \left| \frac{S_n}{n} - \mu \right| = 0 \right) = 1. \] (57)
This is equivalent to the following familiar form of SLLN in Theorem 1.2:
\[P \left(\lim_{n \to \infty} S_n - \mu = 0 \right) = 1. \] (58)

Definition 5.1. Let \((X_n)_{n \geq 1}\) be a sequence of RVs and let \(a\) be a real number. We say that \(X_n\) converges to \(a\) with probability 1 if
\[P \left(\lim_{n \to \infty} X_n = a \right) = 1. \] (59)

Exercise 5.2. Let \((X_n)_{n \geq 1}\) be a sequence of RVs and let \(a\) be a real number. Suppose \(X_n\) converges to \(a\) with probability 1.

(i) Show that
\[P \left(\lim_{n \to \infty} |X_n - a| \leq \varepsilon \right) = 1 \quad \forall \varepsilon > 0. \] (60)

(ii) Fix \(\varepsilon > 0\). Let \(A_k\) be the event that \(|X_n - a| \leq \varepsilon\) for all \(n \geq k\). Show that \(A_1 \subseteq A_2 \subseteq \cdots\) and
\[P \left(\lim_{n \to \infty} |X_n - a| \leq \varepsilon \right) \leq P \left(\bigcup_{k=1}^{\infty} A_k \right). \] (61)

(iii) Show that for each \(\varepsilon > 0\),
\[\lim_{n \to \infty} P (|X_n - a| \leq \varepsilon) \geq \lim_{n \to \infty} P (A_n) = P \left(\bigcup_{k=1}^{\infty} A_k \right) \geq P \left(\lim_{n \to \infty} |X_n - a| \leq \varepsilon \right) = 1. \] (62)
Conclude that \(X_n \to a\) in probability.

Example 5.3. In this example, we will see that convergence in probability does not necessarily imply convergence with probability 1. Define a sequence of RVs \((X_n)_{n \geq 1}\) as follows. Let \(X_1 = 1\), and \(X_2 \sim \text{Uniform}(2,3)\), \(X_3 \sim \text{Uniform}(4,5,6)\), and so on. In general, \(X_k \sim \text{Uniform}((k-1)k/2, \cdots, k(k+1)/2)\) for all \(k \geq 2\). Let \(Y_n = 1\) (some \(X_k\) takes value \(n\)). Then note that
\[P(Y_1 = 1) = 1, \] (63)
\[P(Y_2 = 1) = P(Y_3 = 1) = 1/2, \] (64)
\[P(Y_4 = 1) = P(Y_5 = 1) = P(Y_6 = 1) = 1/3, \] (65)
and so on. Hence it is clear that \(\lim_{n \to \infty} P(Y_n = 1) = 0\). Since \(Y_n\) is an indicator variable, this yields that \(\lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) = 0\) for all \(\varepsilon > 0\), that is, \(Y_n\) converges to 0 in probability. However, always infinitely many \(Y_n\)’s take value 1, so \(Y_n\) cannot converge to 0 with probability 1.
Exercise 5.4 (A simple fact from analysis). Let \((a_n)_{n \geq 0}\) be a sequence of real numbers such that \(\sum_{n=1}^{\infty} a_n < \infty\). Let \(S_n = a_1 + \cdots + a_n\) for all \(n \geq 1\). Show that
\[
\lim_{n \to \infty} a_n = \lim(S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_n = 0.
\]
A typical tool for proving convergence with probability 1 is the following.

Proposition 5.5 (Borel-Cantelli lemma). Let \((X_n)_{n \geq 1}\) be a sequence of nonnegative RVs such that \(\sum_{n=1}^{\infty} E[X_n] < \infty\). Then \(X_n \to 0\) as \(n \to \infty\) with probability 1.

Proof. By Fubini’s theorem (viewing summation as a discrete integral) or applying monotone convergence theorem, we get
\[
E\left[\sum_{n=1}^{\infty} X_n \right] = \sum_{n=1}^{\infty} E[X_n] < \infty.
\]
It follows that \(P(\sum_{n=1}^{\infty} X_n < \infty) = 1\). By Proposition 6.4, we have
\[
1 = P\left(\sum_{n=1}^{\infty} X_n < \infty \right) \leq P\left(\lim_{n \to \infty} X_n = 0 \right).
\]
Since the last expression is at most 1, we conclude that \(P(\lim_{n \to \infty} X_n = 0) = 1\).

Now we prove the strong law of large numbers. The proof of full statement (Theorem 1.2) with finite second moment assumption has extra technicality, so here we prove the result under a stronger assumption of finite fourth moment.

Theorem 5.6 (SLLN with fourth moment). Let \((X_n)_{n \geq 1}\) be a sequence of i.i.d. RVs such that \(E[X_n^4] < \infty\). Let \(S_n = X_1 + \cdots + X_n\) for all \(n \geq 1\). Then \(S_n/n\) converges to \(E[X_1]\) with probability 1.

Proof. Our aim is to show that
\[
\sum_{n=1}^{\infty} E[(S_n/n)^4] < \infty.
\]
Then by Borel-Cantelli lemma, \((S_n/n)^4\) converges to 0 with probability 1. Hence \(S_n/n\) converges to 0 with probability 1, as desired.

For a preparation, we first verify that we have finite first and second moments for \(X_1\). It is easy to verify the inequality \(|x| \leq 1 + x^4\) for all \(x \in \mathbb{R}\), so we have
\[
E[|X_1|] \leq 1 + E[X_1^4] < \infty.
\]
Hence \(E[X_1]\) exists. By shifting, we may assume that \(E[X_1] = 0\). Similarly, it holds that \(x^2 \leq c + x^4\) for all \(x \in \mathbb{R}\) if \(c > 0\) is large enough. Hence \(E[X_1^2] < \infty\).

Note that
\[
E\left[S_n^4 \right] = E\left[\left(\sum_{k=1}^{n} X_k \right)^4 \right] = E\left[\sum_{1 \leq i,j,k,\ell \leq n} X_i X_j X_k X_\ell \right] = \sum_{1 \leq i,j,k,\ell \leq n} E[X_i X_j X_k X_\ell].
\]
Note that by independence and the assumption that \(E[X_1] = 0\), \(E[X_i X_j X_k X_\ell] = 0\) if at least one of the four indices does not repeat. For instance,
\[
E[X_1 X_2 X_3] = E[X_1]E[X_2^2]E[X_3] = 0,
\]
\[
E[X_1 X_2^2 X_3] = E[X_1]E[X_2^2]E[X_3] = 0.
\]
Hence by collecting terms based on number of overlaps, we have

\[
\sum_{1 \leq i,j,k,\ell \leq n} \mathbb{E}[X_i X_j X_k X_\ell] = \sum_{i=1}^{n} \mathbb{E}[X_i^4] + \binom{4}{2} \sum_{1 \leq i < j \leq n} \mathbb{E}[X_i^2] \mathbb{E}[X_j^2]
\]

(74)

\[
= n\mathbb{E}[X_1^4] + 3n(n-1)\mathbb{E}[X_1^2]^2.
\]

(75)

Thus for all \(n \geq 1\),

\[
\mathbb{E}\left[\left(\frac{S_n}{n}\right)^4\right] = \frac{n\mathbb{E}[X_1^4] + 3n(n-1)\mathbb{E}[X_1^2]^2}{n^4} \leq \frac{n^2\mathbb{E}[X_1^4] + 3n^2\mathbb{E}[X_1^2]^2}{n^4} = \frac{\mathbb{E}[X_1^4] + 3\mathbb{E}[X_1^2]}{n^2}.
\]

(76)

Summing over all \(n\), this gives

\[
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\frac{S_n}{n}\right)^4\right] \leq (\mathbb{E}[X_1^4] + 3\mathbb{E}[X_1^2]) \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.
\]

(77)

Hence by Borell-Cantelli lemma, we conclude that \(\left(\frac{S_n}{n}\right)^4\) converges to 0 with probability 1. The same conclusion holds for \(\frac{S_n}{n}\). This shows the assertion. \(\square\)