DISCUSSION – WEEK 1

TA : Mathanky
Email : mathanky04@ucla.edu
Office Hours : Thursday, 11.30PM - 1.30PM,
Boelter Hall 3256F
REVIEW OF WEEK 1

- Bits and Bytes
- Integers
Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

One byte is represented by 2 hexadecimal characters
General Boolean Algebra

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>x • y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR?
Perform the following BitWise operations:

1. \(7 \& 8\)
2. \(12 \mid 11\)
3. \(5 \^ 7\)
4. \(\sim 15\)
Shift Operations

Left Shift: \(x \ll y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x \gg y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior
- Shift amount < 0 or ≥ word size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Integers can be **signed** or **unsigned**.

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- short int \(x = 15213; \)
- short int \(y = -15213; \)

C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(15213)</td>
<td>(3B \ 6D \ 00111011 \ 01101101)</td>
</tr>
<tr>
<td>(y)</td>
<td>(-15213)</td>
<td>(C4 \ 93 \ 11000100 \ 10010011)</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Numeric Ranges

Unsigned Values
- **$UMin$** = 0
 - 000...0
- **$UMax$** = $2^w - 1$
 - 111...1

Two’s Complement Values
- **$TMin$** = -2^{w-1}
 - 100...0
- **$TMax$** = $2^{w-1} - 1$
 - 011...1

Other Values
- Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>$\text{B2U}(X)$</th>
<th>$\text{B2T}(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = \text{B2U}^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = \text{B2T}^{-1}(x)$
 - Bit pattern for two’s comp integer
Mapping Between Signed & Unsigned

Two’s Complement

\[x \rightarrow T2B \rightarrow T2U \rightarrow B2U \rightarrow ux \]

Maintain Same Bit Pattern

Unsigned

\[ux \rightarrow U2B \rightarrow U2T \rightarrow B2T \rightarrow x \]

Maintain Same Bit Pattern

Mappings between unsigned and two’s complement numbers:

Keep bit representations and reinterpret
Conversion Visualized

- 2’s Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

Unsigned Range

UMax
UMax - 1
TMax + 1
TMax

TMax
TMin
0
-1
-2
0

UMax
UUnsigned Range
Casting Surprises

Expression Evaluation
- If there is a mix of unsigned and signed in single expression, _signed values implicitly cast to unsigned_
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples for $W = 32$: $TMIN = -2,147,483,648$, $TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Sign Extension

Task:
- Given \(w \)-bit signed integer \(x \)
- Convert it to \(w+k \)-bit integer with same value

Rule:
- Make \(k \) copies of sign bit:
- \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)
Unsigned Addition

Operands: w bits

\[
\begin{array}{c}
\hline
u \\
+ v \\
\hline
\end{array}
\]

True Sum: $w+1$ bits

\[
\begin{array}{c}
\hline
u + v \\
\hline
\end{array}
\]

Discard Carry: w bits

\[
\begin{array}{c}
\hline
\text{UAdd}_w(u, v) \\
\hline
\end{array}
\]

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

 \[
 s = \text{UAdd}_w(u, v) = (u + v) \mod 2^w
 \]
ADDISON OF BINARY NUMBERS

- How do we add 10 + 5 using binary representation?
- What about 10 - 5?

LEFT SHIFT: MULTIPLY BY POWER OF 2

RIGHT SHIFT: DIVIDE BY POWER OF 2

- How do we multiply an integer x with 5?
- How do we divide an integer x by 8?
Problems to think about:

1. Check if a given number is odd or even, by using only bitwise operators.
2. Check if an integer x is divisible by 4.
3. Check if an integer x is a power of 2.
Write a function that, given a number \(n \), returns another number where the \(k \)th bit from the right is set to 0.

Examples:

\[
\text{killKthBit}(37, 3) = 33 \quad \text{because} \quad 37_{10} = 100101_2 \rightarrow 100001_2 = 33_{10} \\
\text{killKthBit}(37, 4) = 37 \quad \text{because the 4th bit from the right is already 0.}
\]
Machine Level Programming - Basics

Assembly/Machine Code View

CPU

Registers

Condition Codes

Addresses

Data

Instructions

Memory

Code

Data

Stack

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called “RIP” (x86-64)

- Register file
 - Heavily used program data

- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code and user data
- Stack to support procedures
Assembly Characteristics: Data Types

- “Integer” data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)

- Floating point data of 4, 8, or 10 bytes

- (SIMD vector data types of 8, 16, 32 or 64 bytes)

- Code: Byte sequences encoding series of instructions

- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory
<table>
<thead>
<tr>
<th>x86-64 Integer Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rax</td>
</tr>
<tr>
<td>%rbx</td>
</tr>
<tr>
<td>%rcx</td>
</tr>
<tr>
<td>%rdx</td>
</tr>
<tr>
<td>%rsi</td>
</tr>
<tr>
<td>%rdi</td>
</tr>
<tr>
<td>%rsp</td>
</tr>
<tr>
<td>%rbp</td>
</tr>
<tr>
<td>%r8</td>
</tr>
<tr>
<td>%r9</td>
</tr>
<tr>
<td>%r10</td>
</tr>
<tr>
<td>%r11</td>
</tr>
<tr>
<td>%r12</td>
</tr>
<tr>
<td>%r13</td>
</tr>
<tr>
<td>%r14</td>
</tr>
<tr>
<td>%r15</td>
</tr>
</tbody>
</table>

- Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
- Not part of memory (or cache)
movq Operand Combinations

<table>
<thead>
<tr>
<th>Source</th>
<th>Dest</th>
<th>Src,Dest</th>
<th>C Analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imm</td>
<td>Reg</td>
<td>movq $0x4,%rax</td>
<td>temp = 0x4;</td>
</tr>
<tr>
<td>Mem</td>
<td>Reg</td>
<td>movq $-147,(%rax)</td>
<td>*p = -147;</td>
</tr>
<tr>
<td>Reg</td>
<td>Reg</td>
<td>movq %rax,%rdx</td>
<td>temp2 = temp1;</td>
</tr>
<tr>
<td>Mem</td>
<td>Reg</td>
<td>movq %rax,(%rdx)</td>
<td>*p = temp;</td>
</tr>
<tr>
<td>Mem</td>
<td>Reg</td>
<td>movq (%rax),%rdx</td>
<td>temp = *p;</td>
</tr>
</tbody>
</table>
Simple Memory Addressing Modes

- **Normal (R)** \(\text{Mem}[\text{Reg}[R]] \)
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

 \[
 \text{movq} \ (\%rcx),\%rax
 \]

- **Displacement D(R)** \(\text{Mem}[\text{Reg}[R]+D] \)
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

 \[
 \text{movq} \ 8(\%rbp),\%rdx
 \]
Complete Memory Addressing Modes

■ Most General Form

\[D(Rb, Ri, S) \quad \text{Mem}[\text{Reg}[Rb] + S \times \text{Reg}[Ri] + D] \]

- **D:** Constant “displacement” 1, 2, or 4 bytes
- **Rb:** Base register: Any of 16 integer registers
- **Ri:** Index register: Any, except for %rsp
- **S:** Scale: 1, 2, 4, or 8 (*why these numbers?*)

■ Special Cases

\[(Rb, Ri) \quad \text{Mem}[\text{Reg}[Rb] + \text{Reg}[Ri]] \]
\[D(Rb, Ri) \quad \text{Mem}[\text{Reg}[Rb] + \text{Reg}[Ri] + D] \]
\[(Rb, Ri, S) \quad \text{Mem}[\text{Reg}[Rb] + S \times \text{Reg}[Ri]] \]
Example of Simple Addressing Modes

```c
void swap  
   (long *xp, long *yp)
{
   long t0 = *xp;
   long t1 = *yp;
   *xp = t1;
   *yp = t0;
}
```

swap:
```
movq    (%rdi), %rax
movq    (%rsi), %rdx
movq    %rdx, (%rdi)
movq    %rax, (%rsi)
ret
```
Address Computation Instruction

- **leaq** *Src, Dst*
 - *Src* is address mode expression
 - Set *Dst* to address denoted by expression

Example

```c
long m12(long x)
{
  return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax  # t = x+2*x
salq $2, %rax            # return t<<2
```
mov vs lea

\[
\begin{align*}
\text{movl} &\quad (%rdx), \%rax \\
\text{leal} &\quad (%rdx), \%rax
\end{align*}
\]

movl takes the \textbf{contents} of what’s stored in register %rdx and moves it to %rax.

leal computes the load effective \textbf{address} and stores it in %rax. leal analogous to returning a pointer, whereas movl is analogous to returning a dereferenced pointer.