1. Consider the reaction \(6\text{CO}_2(g) + 6\text{H}_2\text{O}(l) \rightarrow 6\text{O}_2(g) + \text{C}_6\text{H}_{12}\text{O}_6(s)\), corresponding to the synthesis of glucose. If each of the reagents is present at a pressure of 1 atm:
(a) What are the values of \(\Delta S, \Delta S_{\text{surr}},\) and \(\Delta S_{\text{surr}}\), per mole of glucose formed, when the reaction is carried out at room temperature?
(b) What about at 350K?
(c) How much do \(\Delta H^o_{\text{rxn}}\) and \(\Delta S^o_{\text{rxn}}\) vary with temperature over this range?
(d) What are the partial pressures of each of the gases when the reaction comes to equilibrium at 298K and under a total pressure of 1 atm?

\[\begin{align*}
\Delta S &= 6\Sigma S_{\text{gas}} + 6\Sigma S_{\text{water}} - 6\Sigma S_{\text{gas}} - 6\Sigma S_{\text{water}} = 6(205.2 \text{ J/mol} \cdot \text{K}) + 6(213.8 \text{ J/mol} \cdot \text{K}) - 6(70.0 \text{ J/mol} \cdot \text{K}) \\
\Delta S &= 238.4 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{mix}} &= 0.26 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{surr}} &= -9.41 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{mix}} &= (-0.26 \text{ J/mol} \cdot \text{K}) - (-9.41 \text{ J/mol} \cdot \text{K}) \\
\Delta S_{\text{mix}} &= -9.67 \text{ J/mol} \cdot \text{K} < 0 \quad \text{reaction is not spontaneous, proceeds from right to left}
\end{align*}\]

b) At \(T = 350K\):
\[\begin{align*}
\Delta S &= 6\Sigma S_{\text{gas}} + 6\Sigma S_{\text{water}} - 6\Sigma S_{\text{gas}} - 6\Sigma S_{\text{water}} = 6(205.2 \text{ J/mol} \cdot \text{K}) + 6(213.8 \text{ J/mol} \cdot \text{K}) - 6(70.0 \text{ J/mol} \cdot \text{K}) \\
\Delta S &= 238.4 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{mix}} &= -307.3 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{surr}} &= -0.307 \text{ J/mol} \cdot \text{K} \\
\Delta S_{\text{mix}} &= -9.97 \text{ J/mol} \cdot \text{K} < 0 \quad \text{reaction is not spontaneous, proceeds from right to left}
\end{align*}\]

c) \[\begin{align*}
\Delta S_{\text{rxn}} &= \Delta H_{\text{rxn}} / \Delta T \\
\Delta S_{\text{rxn}} &= 17.1 \text{ J/mol} \cdot \text{K} \\
\Delta H_{\text{rxn}} &= -280.8 \text{ J/mol} \\
\Delta S_{\text{rxn}} &= -8.28 \text{ J/mol} \cdot \text{K}
\end{align*}\]

d) \[\begin{align*}
\Delta H_{\text{rxn}} &= \Delta H_{\text{gas}} + \Delta H_{\text{water}} \\
\Delta H_{\text{rxn}} &= 249.4 \text{ J/mol} - 238.8 \text{ J/mol} \\
\Delta H_{\text{rxn}} &= 0.5 \text{ J/mol}
\end{align*}\]

2. (a) In a gaseous sample of oxygen atoms and diatomic oxygen in equilibrium at 298K and under a pressure of 1 atm, what fraction of it is dissociated?
(b) At what temperature is the sample 1% dissociated?
(c) At 298K and under a pressure of 10,000 atm, what fraction is dissociated?
\[\Delta S_{fus} = \tilde{S}_{fus} - 2 \tilde{S}_{m} + 2 \left(161.1 \frac{\text{cal}}{\text{mol} \cdot \text{K}} \right) = -117.0 \frac{\text{cal}}{\text{mol} \cdot \text{K}} = -0.117 \text{ cal/K} \]
\[\Delta G_{fus} = \Delta H_{fus} - T \Delta S = \left(-494.4 \frac{\text{cal}}{\text{mol}} \right) - (298 K) \left(-0.117 \frac{\text{cal}}{\text{mol} \cdot \text{K}} \right) = -463.5 \text{ kcal} \]

a) At equilibrium
\[K = \frac{P_{fus}}{P_{Hg}^2} = e^{\frac{\Delta G}{RT}} \]
\[e^{\frac{\Delta G}{RT}} = 1.39 \times 10^8 \Rightarrow x \approx 1 \text{ and } (1-x)^{m} \ll 1 \]
\[\left(\frac{1}{1+x} \right)^{m} = 2.36 \times 10^{-11} \]
\[P_{fus} = 1 \text{ atm and } P_{Hg} = 2.36 \times 10^{-11} \text{ atm} \]

b) Fraction dissociated
\[\frac{n_{fus}}{n_{Hg}} = \frac{P_{fus}}{P_{Hg}} = (2.36 \times 10^{-11}) \approx 2.36 \times 10^{-11} \]

c) \[A + T = 298 K \text{ and } P = 10,000 \text{ atm} \]
\[\Delta K = (10^{10} - x) = 1.79 \times 10^{-8} \ll 1 \]
\[(10^{10} - x) = \left(1.79 \times 10^{-8} \right) \]

3. (a) What is the standard molar entropy \(\tilde{S}_{\circ} \) of solid mercury at its normal (P = 1 atm) melting temperature, \(T_{fus}^\circ \) (Hg)? What is \(\tilde{S}_{\circ} \) for liquid mercury at this temperature? (b) What is the heat of fusion, \(\Delta H_{sol-liq} \), at \(T_{sol-liq}^\circ \) (Hg) \(\equiv T_{fus}^\circ \) (Hg), 1 atm? (c) What is the entropy change \(\Delta S_{sol-liq} \), at \(T_{fus}^\circ \) (Hg), 1 atm? (d) What is \(\Delta G_{sol-liq} \), at \(T_{fus}^\circ \) (Hg), 1 atm?

4. Suppose we have a system consisting of 9 g of ice at 200K and y g of water at 330K, maintained at a pressure of 1 atm, and thermally-insulated (adiabatically-sealed). (a) What must y be to assure that the final state of the system, after it comes to equilibrium, is all liquid water at a uniform temperature of 273K (with no ice remaining)? (b) How much work is done on the system? (c) What change in energy, \(U \), does it undergo? (d) What is the change in enthalpy? (e) What are \(\Delta G \), and \(\Delta S \)?

\[9 \text{ g H}_{2}O \text{ at } 200 K \]
\[y \text{ g H}_{2}O \text{ at } 330 K \]
\[\frac{P}{1 \text{ atm}} \]

heat absorbed by \(9 \text{ g ice (200 \text{K})} \) = equal and opposite heat absorbed by \(y \text{ g of water cooling (330 \text{K})} \)
5. Suppose we start with a mole of \(\text{NO}_2 (g) \) and allow the reaction \(\text{NO}_2 (g) = \text{NO}(g) + \frac{1}{2} \text{O}_2 (g) \) to come to equilibrium at 700K under a total pressure of 1 atm. Suppose further that we measure the equilibrium partial pressure of \(\text{NO} \) to be 0.872 times that of \(\text{NO}_2 \). When we equilibrate the reaction at 800K, on the other hand, we find that the ratio of \(p_{\text{NO}} \) to \(p_{\text{NO}_2} \) is 2.5 (instead of 0.872).

(a) What are the equilibrium constants for this reaction at 700K and at 800K?
(b) Calculate \(\Delta H^\circ_{\text{rxn}} \) (assuming it is temperature-independent), using only the information given above. How does this value for \(\Delta H^\circ_{\text{rxn}} \) compare with what you would calculate from tabulated heats of formation?

Know: \(\text{NO}_2 (g) \rightarrow \text{NO}(g) + \frac{1}{2} \text{O}_2 (g) \), at 700K \(P_{\text{NO}}^\circ = 0.872 \) \(P_{\text{NO}_2}^\circ \), and at 800K \(P_{\text{NO}}^\circ = 2.5 \) \(P_{\text{NO}_2}^\circ \)

Suppose we start initially with 1 mol of \(\text{NO}_2 (g) \), 0 of \(\text{O}_2 (g) \) and \(\text{NO}(g) \). Then we allow the reaction to come to equilibrium where we reacted \(x \) moles of \(\text{NO}_2 \), so we have \(y \) moles of \(\text{NO}(g) \) and \(\frac{1}{2} y \) moles of \(\text{O}_2 (g) \).

\[\begin{align*}
\text{mol} & + (1-y) \text{mol} + y \text{mol} + \frac{1}{2} y \text{mol} = 1 + \frac{1}{2} y \text{mol} \\
\text{at} 700K \quad P_{\text{NO}_2}^\circ & = \frac{y}{1-y} = 0.872 \quad \text{(at 700K)}
\end{align*} \]
\[y = 0.466 \quad \rightarrow \quad n_{\text{tot}} = 1 + \frac{1}{2} (0.466) = 1.233 \text{ mol} \]

Thus, \(P_{\text{H}_2} = \frac{0.466}{1.233} \text{ atm} = 0.378 \text{ atm} \)
\(P_{\text{O}_2} = \frac{1 - 0.466}{1.233} \text{ atm} = 0.433 \text{ atm} \)
\(P_{\text{N}_2} = \frac{1}{1.233} \text{ atm} = 0.819 \text{ atm} \)

\[K(\text{780 K}) = \frac{P_{\text{N}_2}^{1/2}(P_{\text{H}_2})^{1/2}}{P_{\text{O}_2}} \approx \frac{(0.819)(0.466)}{0.433} \]

\[K(\text{800 K}) = 0.38 \]

At 800 K,
\[\frac{P_{\text{O}_2}}{P_{\text{N}_2}} = \frac{y}{1-y} = 2.5 \quad \rightarrow \quad y = 0.714 \quad \text{and} \quad n_{\text{tot}} = 1.357 \text{ mol} \]
\(P_{\text{N}_2} = \frac{0.714}{1.357} \text{ atm} = 0.526 \text{ atm} \)
\(P_{\text{N}_2} = \frac{1 - 0.714}{1.357} \text{ atm} = 0.211 \text{ atm} \)
\(P_{\text{O}_2} = \frac{1}{1.357} \text{ atm} = 0.738 \text{ atm} \)

\[K(\text{800 K}) = \frac{P_{\text{N}_2}^{1/2}(P_{\text{H}_2})^{1/2}}{P_{\text{O}_2}} \approx \frac{(0.526)(0.466)}{0.738} \]

\[K(\text{800 K}) = 1.28 \]

b) Assuming \(\Delta H_{\text{mn}} \) is independent of temperature

\[\frac{\Delta H_{\text{mn}}^{\circ}}{K(T)} = - \Delta H_{\text{mn}}^{\circ} \left(\frac{1}{T} - \frac{1}{T} \right) \]

\[\Delta H_{\text{mn}}^{\circ} = -R \ln \frac{K(T)}{K(T)} \left(\frac{1}{T} - \frac{1}{T} \right) \approx -(8.32 \text{ J/mol K}) \ln \frac{0.88}{1.28} \left(\frac{1}{800K} - \frac{1}{800K} \right) \]

\[\Delta H_{\text{mn}}^{\circ} = 56.9 \text{ kJ/mol} \]