1. Let S be a subset of a topological space X and (s_n) a sequence in S. Prove that (s_n) converges to $x_0 \in S$ if and only if (s_n) converges to x_0 as a sequence in X.

Suppose (s_n) converges to x_0 in S. Given U open in X containing x_0, there exists N such that $n > N$ implies $s_n \in U \cap S$ so $s_n \in U$, hence (s_n) converges to x_0 in X.

Suppose (s_n) converges to x_0 in X. Given V open in S containing x_0, then $V = S \cap U$ for some U open in X. Therefore there exists N such that $n > N$ implies $s_n \in U$.

But $s_n \in S$ so $s_n \in S \cap U = V$ and (s_n) converges to x_0 in S.
2. Let S be a subset of X. (a) Define ∂S, the boundary of S. (b) Prove that S is an open subset of X if and only if $S \cap \partial S = \emptyset$.

(a) $x_0 \in \partial S$ if, given U open in X containing x_0, then $U \cap S \neq \emptyset$ and $U \cap (X \setminus S) \neq \emptyset$.

(b) If S is open in X then if $x_0 \in S$ there exists U open in X such that $U \subseteq S$ so $U \cap (X \setminus S) = \emptyset$ and if $x_0 \notin \partial S$ so $x_0 \notin \partial S = \emptyset$. If $S \cap \partial S = \emptyset$ then $x_0 \in S$ implies $X \setminus S$ so there exists U open in X containing x_0 such that $U \cap (X \setminus S) = \emptyset$ and thus $x_0 \in S$ so S is open.
3. Let \(f_n : X \to Y \) be functions from a topological space \(X \) to a metric space \((Y, d) \). (a) Define: \((f_n)\) converges uniformly to \(f : X \to Y \). (b) Prove that if \((f_n)\) converges uniformly to \(f \) and all the \(f_n \) are continuous, then \(f \) is also continuous.

(a) Given \(\varepsilon > 0 \) there exists \(N \) such that
\[n > N \implies d (f_n(x), f(x)) < \varepsilon \quad \text{for all} \quad x \in X. \]

(b) Let \(x_0 \in X \) and given \(\varepsilon > 0 \) there exists \(N \) such that \(n \geq N \) implies
\[d (f_n(x_0), f(x_0)) < \varepsilon/3. \]
In particular, \(d (f_n(x_0), f(x_0)) < \varepsilon/3 \). Since \(f_n \) is continuous at \(x_0 \), there exists \(U \) open in \(X \) containing \(x_0 \) such that \(x \in U \) implies
\[d (f_n(x), f_N(x)) < \varepsilon/3. \]
Therefore if \(x \in U \) then
\[d (f(x), f(x_0)) \leq d (f(x), f_N(x)) + d (f_N(x), f_N(x_0)) + d (f_N(x_0), f(x_0)) < \varepsilon \]
so \(f \) is continuous at \(x_0 \).
4. Let S be a compact subset of a Hausdorff space X and let $x_0 \in X \setminus S$. Prove there exist disjoint open sets U, V in X such that $x_0 \in U$ and $S \subseteq V$.

Since X is Hausdorff, for each $s \in S$ there exist $U(s), V(s)$ open in X such that $x_0 \in U(s)$, $s \in V(s)$ and $U(s) \cap V(s) = \emptyset$. Then $\{V(s)\}_{s \in S}$ is an open cover of the compact set S so there is a finite subcover $\{V(s_j)\}_{j=1}^n$. Let $V = \bigcup_{j=1}^n V(s_j)$ and $U = \bigcap_{j=1}^n U(s_j)$. Then U and V are open in X, $S \subseteq V$ and $x_0 \in U$ and $U \cap V = \emptyset$.
5. Let \(f: X \to Y \) be a continuous function such that \(f(X) = Y \). Prove that if \(X \) is a separable space then \(Y \) is also separable.

Let \(D \) be a dense countable subset of \(X \), then \(f(D) \) is a countable subset of \(Y \).

Let \(U \) be an open subset of \(Y \). Since \(f \) is continuous, \(f^{-1}(U) \) is open in \(X \) and since \(f \) is onto, \(f^{-1}(U) \) is nonempty so there exists \(x_0 \in f^{-1}(U) \cap D \). Therefore \(f(x_0) \in U \cap f(D) \) so \(f(D) \) is dense in \(Y \).