1. (a) Let $f: X \to Y$ be a function where X and Y are topological spaces. Define: f is continuous. (b) Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that $gf: X \to Z$ is continuous.

[15 points] (a) If U is an open subset of Y, then $f^{-1}(U)$ is an open subset of X.

[15 points] (b) Let U be an open subset of Z. Since g is continuous, then $g^{-1}(U)$ is an open subset of Y. Since f is continuous, then $f^{-1}(g^{-1}(U)) = (gf)^{-1}(U)$ is open in X so gf is continuous.
2. Prove that a compact space has the finite intersection property, that is, if \(\{E_\alpha\}_{\alpha \in A} \) is a family of closed subsets of \(X \) such that \(\bigcap_{j=1}^{m} E_{\alpha_j} \neq \emptyset \) for every finite subfamily \(\{E_{\alpha_1}, \ldots, E_{\alpha_m}\} \), then \(\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset \).

To prove the contrapositive, suppose \(\bigcap_{\alpha \in A} E_{\alpha} = \emptyset \). Then \(X \setminus \bigcap_{\alpha \in A} E_{\alpha} = \bigcup_{\alpha \in A} (X \setminus E_{\alpha}) = X \).

So \(\{X \setminus E_{\alpha}\}_{\alpha \in A} \) is an open cover of \(X \).

Since \(X \) is compact, there is a finite subcover \(\{X \setminus E_{\alpha_j}\}_{j=1}^{n} \). Therefore

\[
X = \bigcup_{j=1}^{n} (X \setminus E_{\alpha_j}) = X \setminus \bigcap_{j=1}^{n} E_{\alpha_j} \text{ and thus } \bigcap_{j=1}^{n} E_{\alpha_j} = \emptyset .
\]
3. Let \(S \) be a subset of a topological space \(X \). (a) Define \(\bar{S} \), the closure of \(S \). (b) Prove that the complement of the closure of \(S \) is the interior of the complement of \(S \), that is, \(X \setminus \bar{S} = \text{int}(X \setminus S) \).

5 points] (a) \(x \in \bar{S} \) if and only if given an open set \(U \) containing \(x \), then \(U \cap S \neq \emptyset \).

15 points] (b) Let \(x \in \text{int}(X \setminus S) \) then \(x \in U \subseteq X \setminus S \) where \(U \) is open in \(X \). Since \(U \cap S = \emptyset \), then \(x \notin \overline{S} \) so \(\text{int}(X \setminus S) = X \setminus \overline{S} \).

If \(x \in X \setminus \overline{S} \) then there exists \(U \) open in \(X \) containing \(x \) such that \(U \cap S = \emptyset \). Therefore \(x \in \text{int}(X \setminus S) \) and \(X \setminus \overline{S} \subseteq \text{int}(X \setminus S) \).
4. (a) State and (b) prove Lindelof's Theorem for topological spaces.

[5 points] (a) Every open cover of a second-countable topological space has a countable subcover.

[15 points] (b) Let \(B = \{ V_j \}_{j=1}^{\infty} \) be a countable base for the second-countable space \(X \). Let \(\{ U_a \}_{a \in A} \) be an open cover of \(X \). For \(x \in X \), \(x \in U_a \) for some \(a \in A \). Since \(B \) is a base then \(x \in V_j \subseteq U_a \) for some \(j \). Let \(C \subseteq B \) be those \(V_j \) such that \(V_j \subseteq U_a \) for some \(a \in A \), then \(\{ V_j \}_{j \in C} \) is an open cover of \(X \). For each \(j \) choose \(U_{a_j} \) such that \(V_j \subseteq U_{a_j} \) then \(\{ U_{a_j} \}_{j=1}^{\infty} \) is a countable subcover of \(\{ U_a \}_{a \in A} \).
5. A subset S of a topological space X is a retract of X if there is a continuous function $r: X \to S$ such that $r(s) = s$ for all $s \in S$. Prove that if X is a Hausdorff space and S is a retract of X, then S is a closed subset of X. (Hint: Prove that $X \setminus S$ is open.)

To prove that $X \setminus S$ is open, let $x_0 \in X \setminus S$. Since $r(x_0) \in S$ then $r(x_0) \neq x_0$.

So since X is Hausdorff there exist open sets U, V such that $x_0 \in U$, $r(x_0) \in V$ and $U \cap V = \emptyset$. Since r is continuous, $r^{-1}(V)$ is open in X. Let $W = r^{-1}(V) \cap U$ which is open and contains x_0. Then $W \cap V = \emptyset$ since $U \cap V = \emptyset$. Thus if $x \in W$ then $x \in V$ it follows that $r(x) \neq x$ so $x \notin S$. We conclude that $W \subseteq X \setminus S$ and therefore $X \setminus S$ is open.